54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Demography and its effects on genomic variation in crop domestication

      , , ,
      Nature Plants
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          The genetics of inbreeding depression.

          Inbreeding depression - the reduced survival and fertility of offspring of related individuals - occurs in wild animal and plant populations as well as in humans, indicating that genetic variation in fitness traits exists in natural populations. Inbreeding depression is important in the evolution of outcrossing mating systems and, because intercrossing inbred strains improves yield (heterosis), which is important in crop breeding, the genetic basis of these effects has been debated since the early twentieth century. Classical genetic studies and modern molecular evolutionary approaches now suggest that inbreeding depression and heterosis are predominantly caused by the presence of recessive deleterious mutations in populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution of crop species: genetics of domestication and diversification.

            Domestication is a good model for the study of evolutionary processes because of the recent evolution of crop species (<12,000 years ago), the key role of selection in their origins, and good archaeological and historical data on their spread and diversification. Recent studies, such as quantitative trait locus mapping, genome-wide association studies and whole-genome resequencing studies, have identified genes that are associated with the initial domestication and subsequent diversification of crops. Together, these studies reveal the functions of genes that are involved in the evolution of crops that are under domestication, the types of mutations that occur during this process and the parallelism of mutations that occur in the same pathways and proteins, as well as the selective forces that are acting on these mutations and that are associated with geographical adaptation of crop species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inferring human population size and separation history from multiple genome sequences

              The availability of complete human genome sequences from populations across the world has given rise to new population genetic inference methods that explicitly model their ancestral relationship under recombination and mutation. So far, application of these methods to evolutionary history more recent than 20-30 thousand years ago and to population separations has been limited. Here we present a new method that overcomes these shortcomings. The Multiple Sequentially Markovian Coalescent (MSMC) analyses the observed pattern of mutations in multiple individuals, focusing on the first coalescence between any two individuals. Results from applying MSMC to genome sequences from nine populations across the world suggest that the genetic separation of non-African ancestors from African Yoruban ancestors started long before 50,000 years ago, and give information about human population history as recently as 2,000 years ago, including the bottleneck in the peopling of the Americas, and separations within Africa, East Asia and Europe.
                Bookmark

                Author and article information

                Journal
                Nature Plants
                Nature Plants
                Springer Nature America, Inc
                2055-0278
                August 2018
                July 30 2018
                August 2018
                : 4
                : 8
                : 512-520
                Article
                10.1038/s41477-018-0210-1
                30061748
                8916afa8-562b-48f5-8d1e-e69898618144
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article