15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Purple sulfur bacteria control the growth of aerobic heterotrophic bacterioplankton in a meromictic salt lake.

      , ,
      Applied and environmental microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In meromictic Mahoney Lake, British Columbia, Canada, the heterotrophic bacterial production in the mixolimnion exceeded concomitant primary production by a factor of 7. Bacterial growth rates were correlated neither to primary production nor to the amount of chlorophyll a. Both results indicate an uncoupling of bacteria and phytoplankton. In the chemocline of the lake, an extremely dense population of the purple sulfur bacterium Amoebobacter purpureus is present year round. We investigated whether anoxygenic phototrophs are significant for the growth of aerobic bacterioplankton in the overlaying water. Bacterial growth rates in the mixolimnion were limited by inorganic phosphorus or nitrogen most of the time, and the biomass of heterotrophic bacteria did not increase until, in autumn, 86% of the cells of A. purpureus appeared in the mixolimnion because of their reduced buoyant density. The increase in heterotrophic bacterial biomass, soluble phosphorus concentrations below the detection limit, and an extraordinarily high activity of alkaline phosphatase in the mixolimnion indicate a rapid liberation of organically bound phosphorus from A. purpureus cells accompanied by a simultaneous incorporation into heterotrophic bacterioplankton. High concentrations of allochthonously derived dissolved organic carbon (mean, 60 mg of C(middot)liter(sup-1)) were measured in the lake water. In Mahoney Lake, liberation of phosphorus from upwelling purple sulfur bacteria and degradation of allochthonous dissolved organic carbon as an additional carbon source render heterotrophic bacterial production largely independent of the photosynthesis of phytoplankton. A recycling of inorganic nutrients via phototrophic bacteria also appears to be relevant in other lakes with anoxic bottom waters.

          Related collections

          Author and article information

          Journal
          Appl. Environ. Microbiol.
          Applied and environmental microbiology
          0099-2240
          0099-2240
          Sep 1996
          : 62
          : 9
          Article
          10.1128/aem.62.9.3251-3258.1996
          1388937
          16535399
          88d76d0f-97b4-4682-9afd-3253c6b547fe
          History

          Comments

          Comment on this article