6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advances in chitosan biopolymer composite materials: from bioengineering, wastewater treatment to agricultural applications

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chitosan has become the most known and second abundantly available recyclable, non-hazardous and eco-friendly biopolymer after cellulose with several advantageous biomedical, agriculture, and wastewater treatment applications. As nanotechnology has progressed, researchers have begun incorporating chitosan-based carbon compounds into various compounds, elements, and carbonaceous materials to increase their efficiency and biocompatibility. Chitosan carbon compounds have also been used directly in many applications due to their inherent chelating and antibacterial features and the presence of customizable functional groups. This review widely discusses- the properties and synthesis of chitosan and chitosan composite. It also discusses the modification of chitosan with different compounds, metals, carbonaceous materials, and agriculture residues to allow their use on an industrial scale. Recent advances in the use of chitosan in biomedical, agro-waste management, agriculture, wastewater treatment, and a few other applications (such as food packaging, cosmetics, and the textile and paper sector) are briefly discussed. Furthermore, this analysis reveals that chitosan and its composite materials are potential, low-cost products for environmental clean-up that can be made with basic manufacturing procedures.

          Related collections

          Most cited references166

          • Record: found
          • Abstract: not found
          • Article: not found

          Chitin and chitosan: Properties and applications

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-conventional low-cost adsorbents for dye removal: a review.

            Adsorption techniques are widely used to remove certain classes of pollutants from waters, especially those that are not easily biodegradable. Dyes represent one of the problematic groups. Currently, a combination of biological treatment and adsorption on activated carbon is becoming more common for removal of dyes from wastewater. Although commercial activated carbon is a preferred sorbent for color removal, its widespread use is restricted due to high cost. As such, alternative non-conventional sorbents have been investigated. It is well-known that natural materials, waste materials from industry and agriculture and biosorbents can be obtained and employed as inexpensive sorbents. In this review, an extensive list of sorbent literature has been compiled. The review (i) presents a critical analysis of these materials; (ii) describes their characteristics, advantages and limitations; and (iii) discusses various mechanisms involved. It is evident from a literature survey of about 210 recent papers that low-cost sorbents have demonstrated outstanding removal capabilities for certain dyes. In particular, chitosan might be a promising adsorbent for environmental and purification purposes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol.

              We identify a cytochrome P450 gene (CYP6AE14) from cotton bollworm (Helicoverpa armigera), which permits this herbivore to tolerate otherwise inhibitory concentrations of the cotton metabolite, gossypol. CYP6AE14 is highly expressed in the midgut and its expression correlates with larval growth when gossypol is included in the diet. When larvae are fed plant material expressing double-stranded RNA (dsRNA) specific to CYP6AE14, levels of this transcript in the midgut decrease and larval growth is retarded. Both effects are more dramatic in the presence of gossypol. As a glutathione-S-transferase gene (GST1) is silenced in GST1 dsRNA-expressing plants, feeding insects plant material expressing dsRNA may be a general strategy to trigger RNA interference and could find applications in entomological research and field control of insect pests.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Materials Research Express
                Mater. Res. Express
                IOP Publishing
                2053-1591
                May 06 2022
                May 01 2022
                May 06 2022
                May 01 2022
                : 9
                : 5
                : 052002
                Article
                10.1088/2053-1591/ac5a9d
                88b05d18-72af-4421-9c58-783bb3266da2
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article