27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions

      , ,
      Journal of Endocrinology
      Bioscientifica

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.

          Related collections

          Most cited references293

          • Record: found
          • Abstract: found
          • Article: not found

          Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure.

          Diabetes is associated with β cell failure. But it remains unclear whether the latter results from reduced β cell number or function. FoxO1 integrates β cell proliferation with adaptive β cell function. We interrogated the contribution of these two processes to β cell dysfunction, using mice lacking FoxO1 in β cells. FoxO1 ablation caused hyperglycemia with reduced β cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of β cell mass was due to β cell dedifferentiation, not death. Dedifferentiated β cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient β cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of β cell failure and suggest that treatment of β cell dysfunction should restore differentiation, rather than promoting β cell replication. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival.

            The protein kinase PERK couples protein folding in the endoplasmic reticulum (ER) to polypeptide biosynthesis by phosphorylating the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha), attenuating translation initiation in response to ER stress. PERK is highly expressed in mouse pancreas, an organ active in protein secretion. Under physiological conditions, PERK was partially activated, accounting for much of the phosphorylated eIF2alpha in the pancreas. The exocrine and endocrine pancreas developed normally in Perk-/- mice. Postnatally, ER distention and activation of the ER stress transducer IRE1alpha accompanied increased cell death and led to progressive diabetes mellitus and exocrine pancreatic insufficiency. These findings suggest a special role for translational control in protecting secretory cells from ER stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pancreatic beta-cell mass in European subjects with type 2 diabetes.

              Decreases in both beta-cell function and number can contribute to insulin deficiency in type 2 diabetes. Here, we quantified the beta-cell mass in pancreas obtained at autopsy of 57 type 2 diabetic (T2D) and 52 non-diabetic subjects of European origin. Sections from the body and tail were immunostained for insulin. The beta-cell mass was calculated from the volume density of beta-cells (measured by point-counting methods) and the weight of the pancreas. The pancreatic insulin concentration was measured in some of the subjects. beta-cell mass increased only slightly with body mass index (BMI). After matching for BMI, the beta-cell mass was 41% (BMI 15 years of overt diabetes respectively). Pancreatic insulin concentration was 30% lower in patients. In conclusion, the average beta-cell mass is about 39% lower in T2D subjects compared with matched controls. Its decrease with duration of the disease could be a consequence of diabetes that, with further impairment of insulin secretion, contributes to the progressive deterioration of glucose homeostasis. We do not believe that the small difference in beta-cell mass observed within 5 years of onset could cause diabetes in the absence of beta-cell dysfunction.
                Bookmark

                Author and article information

                Journal
                Journal of Endocrinology
                Bioscientifica
                0022-0795
                1479-6805
                February 2018
                February 2018
                February 2018
                February 2018
                : 236
                : 2
                : R109-R143
                Article
                10.1530/JOE-17-0516
                29203573
                888b69cf-d99a-434e-8e63-f1ae06ce9477
                © 2018

                Free to read

                History

                Comments

                Comment on this article