2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ciprofloxacin Enhances TRAIL-Induced Apoptosis in Lung Cancer Cells by Upregulating the Expression and Protein Stability of Death Receptors through CHOP Expression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ciprofloxacin (CIP) is a potent antimicrobial agent with multiple effects on host cells and tissues. Previous studies have highlighted their proapoptotic effect on human cancer cells. The current study showed that subtoxic doses of CIP effectively sensitized multiple cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Although TRAIL alone mediated the partial proteolytic processing of procaspase-3 in lung cancer cells, co-treatment with CIP and TRAIL efficiently restored the complete activation of caspases. We found that treatment of lung cancer with CIP significantly upregulated the expression and protein stability of death receptor (DR) 5. These effects were mediated through the regulation of transcription factor CCAT enhancer-binding protein homologous protein (CHOP) since the silencing of these signaling molecules abrogated the effect of CIP. Taken together, these results indicated that the upregulation of death receptor expression and protein stability by CIP contributed to the restoration of TRAIL-sensitivity in lung cancer cells.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of resistance to TRAIL-induced apoptosis in cancer.

          The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is regarded as a potential anticancer agent. However, considerable numbers of cancer cells, especially some highly malignant tumors, are resistant to apoptosis induction by TRAIL, and some cancer cells that were originally sensitive to TRAIL-induced apoptosis can become resistant after repeated exposure (acquired resistance). Understanding the mechanisms underlying such resistance and developing strategies to overcome it are important for the successful use of TRAIL for cancer therapy. Resistance to TRAIL can occur at different points in the signaling pathways of TRAIL-induced apoptosis. Dysfunctions of the death receptors DR4 and DR5 due to mutations can lead to resistance. The adaptor protein Fas-associated death domain (FADD) and caspase-8 are essential for assembly of the death-inducing signaling complex, and defects in either of these molecules can lead to TRAIL resistance. Overexpression of cellular FADD-like interleukin-1beta-converting enzyme-inhibitory protein (cFLIP) correlates with TRAIL resistance in several types of cancer. Overexpression of Bcl-2 or Bcl-X(L), loss of Bax or Bak function, high expression of inhibitor of apoptosis proteins, and reduced release of second mitochondria-derived activator of caspases (Smac/Diablo) from the mitochondria to the cytosol have all been reported to result in TRAIL resistance in mitochondria-dependent type II cancer cells. Finally, activation of different subunits of mitogen-activated protein kinases or nuclear factor-kappa B can lead to development of either TRAIL resistance or apoptosis in certain types of cancer cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Immunomodulatory effects of quinolones.

            We review data on the in-vitro, ex-vivo, in-vivo, and clinical effects of fluoroquinolones on the synthesis of cytokines and their mechanisms of immunomodulation. In general, most fluoroquinolone derivatives superinduce in-vitro interleukin 2 synthesis but inhibit synthesis of interleukin 1 and tumour necrosis factor (TNF)alpha; furthermore, they enhance significantly the synthesis of colony-stimulating factors (CSF). Fluoroquinolones affect in-vivo cellular and humoral immunity by attenuating cytokine responses. Interleukins 10 and 12 have an important role in the functional differentiation of immunocompetent cells and trigger the initiation of the acquired immune response. In addition, certain fluoroquinolones were seen to enhance haematopoiesis by increasing the concentrations of CSF in the lung as well as in the bone marrow and shaft. Those fluoroquinolones exerting significant effects on haematopoiesis were those with a cyclopropyl moiety at position N1 of their quinolone core structure. Mechanisms that could explain the various immunomodulatory effects of fluoroquinolones include: (1) an effect on intracellular cyclic adenosine-3',5'-monophosphate and phosphodiesterases; (2) an effect on transcription factors such as nuclear factor (NF)kappaB, activator protein 1, NF-interleukin-6 and nuclear factor of activated T cells; and (3) a triggering effect on the eukaryotic equivalent of bacterial SOS response with its ensuing intracellular events. Further studies are required, especially in the clinical setting to exploit fully the potential of the immunomodulatory effect of fluoroquinolones during, for example, immunosuppression, chronic airway inflammatory diseases, and sinusitis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanism of fluoroquinolone action.

              When fluoroquinolones bind to gyrase or topoisomerase IV in the presence of DNA, they alter protein conformation. DNA cleavage results with diminished religation, so the enzymes are trapped in ternary complexes with drug and cleaved DNA. Preferential localization of gyrase ahead of replication forks and topoisomerase IV behind them causes fluoroquinolone-mediated complexes with the two enzymes to have different physiological consequences.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                16 October 2018
                October 2018
                : 19
                : 10
                : 3187
                Affiliations
                [1 ]Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan 49267, Korea; eunjin1025@ 123456hanmail.net (E.J.L.); yuuun33@ 123456naver.com (Y.J.Y.); jeonghoonheo@ 123456kosin.ac.kr (J.H.)
                [2 ]Department of Obstetrics and Gynecology, College of Medicine, Kosin University, Busan 49267, Korea; leehula@ 123456kosin.ac.kr
                [3 ]Institute for Medical Sciences, College of Medicine, Kosin University, Busan 49267, Korea
                Author notes
                [* ]Correspondence: kimyh@ 123456kosin.ac.kr ; Tel.: +82-51-990-6505
                [†]

                The authors have contributed equally in this work.

                Article
                ijms-19-03187
                10.3390/ijms19103187
                6214089
                30332761
                8879f07b-256c-4406-9590-894d9c6e499f
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 September 2018
                : 13 October 2018
                Categories
                Article

                Molecular biology
                ciprofloxacin,trail,death receptor,chop
                Molecular biology
                ciprofloxacin, trail, death receptor, chop

                Comments

                Comment on this article