1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A review on the recent developments in controlling the structural, photophysical and electronic properties of conjugated porous polymer (CPP) photocatalysts is presented.

          Abstract

          Conjugated porous polymers (CPPs) have recently emerged as a new class of visible light-active, organic and heterogeneous photocatalysts for visible light-mediated photoredox reactions. The CPPs have been established as a potential alternative to resolve critical drawbacks of traditional molecular and homogeneous photocatalysts due to their structural durability, non-toxicity, low cost due to the absence of noble metals, and high designability. Tremendous attempts have been made toward the design and synthesis of CPPs for a variety of visible light-promoted photocatalytic chemical transformations. Nevertheless, the concomitant design protocols of CPPs have not been well structured so far. Herein, in this review, we aim to summarize the recent developments in controlling the structural, photophysical and electronic properties of CPPs, and thereby extract the underlying design principles. According to the principle of the photocatalytic process, key parameters for the molecular design of CPPs were described in three sections: (1) light absorbance by energy band gap, (2) charge separation and transport, and (3) electron transfer to the target substrate. The macroscopic features, i.e. morphology, porosity and chemical functionality, and processibility of CPPs were also presented for the enhancement of their photocatalytic activity.

          Related collections

          Most cited references133

          • Record: found
          • Abstract: found
          • Article: not found

          A metal-free polymeric photocatalyst for hydrogen production from water under visible light.

          The production of hydrogen from water using a catalyst and solar energy is an ideal future energy source, independent of fossil reserves. For an economical use of water and solar energy, catalysts that are sufficiently efficient, stable, inexpensive and capable of harvesting light are required. Here, we show that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor. Contrary to other conducting polymer semiconductors, carbon nitride is chemically and thermally stable and does not rely on complicated device manufacturing. The results represent an important first step towards photosynthesis in general where artificial conjugated polymer semiconductors can be used as energy transducers.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterogeneous photocatalyst materials for water splitting.

              This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent. Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade. The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials. Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references).
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                MHAOAL
                Materials Horizons
                Mater. Horiz.
                Royal Society of Chemistry (RSC)
                2051-6347
                2051-6355
                January 2 2020
                2020
                : 7
                : 1
                : 15-31
                Affiliations
                [1 ]Max Planck Institute for Polymer Research
                [2 ]55128 Mainz
                [3 ]Germany
                [4 ]Water Cycle Research Center
                [5 ]Korea Institute of Science and Technology (KIST)
                [6 ]Departmemt of Materials Science
                [7 ]Fudan University
                [8 ]Shanghai 200433
                [9 ]P. R. China
                Article
                10.1039/C9MH01071H
                884911e0-2592-435a-9a66-ce901b69a2e0
                © 2020

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article