44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Learning Gene Networks under SNP Perturbations Using eQTL Datasets

      research-article
      , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The standard approach for identifying gene networks is based on experimental perturbations of gene regulatory systems such as gene knock-out experiments, followed by a genome-wide profiling of differential gene expressions. However, this approach is significantly limited in that it is not possible to perturb more than one or two genes simultaneously to discover complex gene interactions or to distinguish between direct and indirect downstream regulations of the differentially-expressed genes. As an alternative, genetical genomics study has been proposed to treat naturally-occurring genetic variants as potential perturbants of gene regulatory system and to recover gene networks via analysis of population gene-expression and genotype data. Despite many advantages of genetical genomics data analysis, the computational challenge that the effects of multifactorial genetic perturbations should be decoded simultaneously from data has prevented a widespread application of genetical genomics analysis. In this article, we propose a statistical framework for learning gene networks that overcomes the limitations of experimental perturbation methods and addresses the challenges of genetical genomics analysis. We introduce a new statistical model, called a sparse conditional Gaussian graphical model, and describe an efficient learning algorithm that simultaneously decodes the perturbations of gene regulatory system by a large number of SNPs to identify a gene network along with expression quantitative trait loci (eQTLs) that perturb this network. While our statistical model captures direct genetic perturbations of gene network, by performing inference on the probabilistic graphical model, we obtain detailed characterizations of how the direct SNP perturbation effects propagate through the gene network to perturb other genes indirectly. We demonstrate our statistical method using HapMap-simulated and yeast eQTL datasets. In particular, the yeast gene network identified computationally by our method under SNP perturbations is well supported by the results from experimental perturbation studies related to DNA replication stress response.

          Author Summary

          A complete understanding of how gene regulatory networks are wired in a biological system is important in many areas of biology and medicine. The most popular method for investigating a gene network has been based on experimental perturbation studies, where the expression of a gene is experimentally manipulated to observe how this perturbation affects the expressions of other genes. Such experimental methods are costly, laborious, and do not scale to a perturbation of more than two genes at a time. As an alternative, genetical genomics approach uses genetic variants as naturally-occurring perturbations of gene regulatory system and learns gene networks by decoding the perturbation effects by genetic variants, given population gene-expression and genotype data. However, since there exist millions of genetic variants in genomes that simultaneously perturb a gene network, it is not obvious how to decode the effects of such multifactorial perturbations from data. Our statistical approach overcomes this computational challenge and recovers gene networks under SNP perturbations using probabilistic graphical models. As population gene-expression and genotype datasets are routinely collected to study genetic architectures of complex diseases and phenotypes, our approach can directly leverage these existing datasets to provide a more effective way of identifying gene networks.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Sparse inverse covariance estimation with the graphical lasso.

          We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm--the graphical lasso--that is remarkably fast: It solves a 1000-node problem ( approximately 500,000 parameters) in at most a minute and is 30-4000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinshausen and Bühlmann (2006). We illustrate the method on some cell-signaling data from proteomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic analysis of genome-wide variation in human gene expression.

            Natural variation in gene expression is extensive in humans and other organisms, and variation in the baseline expression level of many genes has a heritable component. To localize the genetic determinants of these quantitative traits (expression phenotypes) in humans, we used microarrays to measure gene expression levels and performed genome-wide linkage analysis for expression levels of 3,554 genes in 14 large families. For approximately 1,000 expression phenotypes, there was significant evidence of linkage to specific chromosomal regions. Both cis- and trans-acting loci regulate variation in the expression levels of genes, although most act in trans. Many gene expression phenotypes are influenced by several genetic determinants. Furthermore, we found hotspots of transcriptional regulation where significant evidence of linkage for several expression phenotypes (up to 31) coincides, and expression levels of many genes that share the same regulatory region are significantly correlated. The combination of microarray techniques for phenotyping and linkage analysis for quantitative traits allows the genetic mapping of determinants that contribute to variation in human gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide association analysis by lasso penalized logistic regression.

              In ordinary regression, imposition of a lasso penalty makes continuous model selection straightforward. Lasso penalized regression is particularly advantageous when the number of predictors far exceeds the number of observations. The present article evaluates the performance of lasso penalized logistic regression in case-control disease gene mapping with a large number of SNPs (single nucleotide polymorphisms) predictors. The strength of the lasso penalty can be tuned to select a predetermined number of the most relevant SNPs and other predictors. For a given value of the tuning constant, the penalized likelihood is quickly maximized by cyclic coordinate ascent. Once the most potent marginal predictors are identified, their two-way and higher order interactions can also be examined by lasso penalized logistic regression. This strategy is tested on both simulated and real data. Our findings on coeliac disease replicate the previous SNP results and shed light on possible interactions among the SNPs. The software discussed is available in Mendel 9.0 at the UCLA Human Genetics web site. Supplementary data are available at Bioinformatics online.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                February 2014
                27 February 2014
                : 10
                : 2
                : e1003420
                Affiliations
                [1]Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
                Rutgers University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: SK. Performed the experiments: LZ. Analyzed the data: SK LZ. Contributed reagents/materials/analysis tools: SK LZ. Wrote the paper: SK.

                Article
                PCOMPBIOL-D-13-01316
                10.1371/journal.pcbi.1003420
                3937098
                24586125
                8828c27b-b92a-4ac7-9913-27f56a1cc1bd
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 July 2013
                : 18 November 2013
                Page count
                Pages: 20
                Funding
                This material is based upon work supported by an NSF CAREER Award under grant No. MCB-1149885, Sloan Research Fellowship, and Okawa Foundation Research Grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational biology
                Population genetics
                Regulatory networks
                Systems biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article