24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined intensive management of fertilization, tillage, and organic material mulching regulate soil bacterial communities and functional capacities by altering soil potassium and pH in a Moso bamboo forest

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intensive management is a common practice in agricultural and forestry ecosystems to improve soil quality and crop yield by influencing nutrient supply and soil microbiota; however, the linkage between soil nutrients and bacterial community and functional capacities in intensively managed economic forests has not been well studied. In this study, we investigated the soil properties such as available potassium (AK), available nitrogen (AN), available phosphorus (AP), ammonium (NH 4 + ), nitrate (NO 3 - ), organic matter (OM), total nitrogen (TN), total phosphorus (TP), bacterial diversity and community composition, potential functions of rhizome roots, and soil microbiota across a chronosequence of intensively managed Moso bamboo ( Phyllostachys edulis) forests. Our results demonstrated that the combined intensive management (deep tillage, fertilization, and organic material mulching) in this study caused a significant increase in the concentrations of AK, AN, AP, NH 4 + , NO 3 - , OM, TN, and TP ( P < 0.05). However, they led to a remarkable decrease in pH ( P < 0.05). Such changes lowered the Shannon diversity of the soil and rhizome root microbiota but did not significantly affect the community composition and functional capacity. Soil bacterial community variation was predominantly mediated by soil total potassium (TK) (15.02%), followed by pH (11.29%) and AK (11.13%). We further observed that Nitrospirae accounted for approximately 50% of the variation in soil pH, NO 3 - , NH 4 + , and AK, indicating its importance in soil nutrient cycling, especially nitrogen cycling. Accordingly, we propose that the management-induced changes in soil parameters reshaped the bacterial community structure and keystone bacterial assemblage, leading to the differentiation of microbial functions.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The SILVA ribosomal RNA gene database project: improved data processing and web-based tools

          SILVA (from Latin silva, forest, http://www.arb-silva.de) is a comprehensive web resource for up to date, quality-controlled databases of aligned ribosomal RNA (rRNA) gene sequences from the Bacteria, Archaea and Eukaryota domains and supplementary online services. The referred database release 111 (July 2012) contains 3 194 778 small subunit and 288 717 large subunit rRNA gene sequences. Since the initial description of the project, substantial new features have been introduced, including advanced quality control procedures, an improved rRNA gene aligner, online tools for probe and primer evaluation and optimized browsing, searching and downloading on the website. Furthermore, the extensively curated SILVA taxonomy and the new non-redundant SILVA datasets provide an ideal reference for high-throughput classification of data from next-generation sequencing approaches.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            QIIME allows analysis of high-throughput community sequencing data.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Search and clustering orders of magnitude faster than BLAST.

              Biological sequence data is accumulating rapidly, motivating the development of improved high-throughput methods for sequence classification. UBLAST and USEARCH are new algorithms enabling sensitive local and global search of large sequence databases at exceptionally high speeds. They are often orders of magnitude faster than BLAST in practical applications, though sensitivity to distant protein relationships is lower. UCLUST is a new clustering method that exploits USEARCH to assign sequences to clusters. UCLUST offers several advantages over the widely used program CD-HIT, including higher speed, lower memory use, improved sensitivity, clustering at lower identities and classification of much larger datasets. Binaries are available at no charge for non-commercial use at http://www.drive5.com/usearch.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                25 August 2022
                2022
                : 13
                : 944874
                Affiliations
                [1] 1State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University , Hangzhou, China
                [2] 2Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University , Hangzhou, China
                [3] 3Protection of Ecological Forestry Research Center in Huzhou , Huzhou, China
                Author notes

                Edited by: Bernardo González, Adolfo Ibáñez University, Chile

                Reviewed by: Muthusamy Ramakrishnan, Nanjing Forestry University, China; Aimin Wu, South China Agricultural University, China

                *Correspondence: Xinchun Lin linxcx@ 123456163.com

                This article was submitted to Microbe and Virus Interactions with Plants, a section of the journal Frontiers in Microbiology

                †These authors have contributed equally to this work

                Article
                10.3389/fmicb.2022.944874
                9453820
                36090117
                881e6c57-1bf2-42f5-8bd9-ee134da7a00b
                Copyright © 2022 Zheng, Liu, Cai, Shao, Zhu and Lin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 May 2022
                : 25 July 2022
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 74, Pages: 17, Words: 10102
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                intensive management,nitrospirae,denitrification,soil chemical property,moso bamboo,microbiota

                Comments

                Comment on this article