28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Therapeutic potential of CAR-T cell-derived exosomes: a cell-free modality for targeted cancer therapy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chimeric antigen receptor (CAR)-based T-cell adoptive immunotherapy is a distinctively promising therapy for cancer. The engineering of CARs into T cells provides T cells with tumor-targeting capabilities and intensifies their cytotoxic activity through stimulated cell expansion and enhanced cytokine production. As a novel and potent therapeutic modality, there exists some uncontrollable processes which are the potential sources of adverse events. As an extension of this impactful modality, CAR-T cell-derived exosomes may substitute CAR-T cells to act as ultimate attackers, thereby overcoming some limitations. Exosomes retain most characteristics of parent cells and play an essential role in intercellular communications via transmitting their cargo to recipient cells. The application of CAR-T cell-derived exosomes will make this cell-based therapy more clinically controllable as it also provides a cell-free platform to diversify anticancer mediators, which responds effectively to the complexity and volatility of cancer. It is believed that the appropriate application of both cellular and exosomal platforms will make this effective treatment more practicable.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Inducible apoptosis as a safety switch for adoptive cell therapy.

          Cellular therapies could play a role in cancer treatment and regenerative medicine if it were possible to quickly eliminate the infused cells in case of adverse events. We devised an inducible T-cell safety switch that is based on the fusion of human caspase 9 to a modified human FK-binding protein, allowing conditional dimerization. When exposed to a synthetic dimerizing drug, the inducible caspase 9 (iCasp9) becomes activated and leads to the rapid death of cells expressing this construct. We tested the activity of our safety switch by introducing the gene into donor T cells given to enhance immune reconstitution in recipients of haploidentical stem-cell transplants. Patients received AP1903, an otherwise bioinert small-molecule dimerizing drug, if graft-versus-host disease (GVHD) developed. We measured the effects of AP1903 on GVHD and on the function and persistence of the cells containing the iCasp9 safety switch. Five patients between the ages of 3 and 17 years who had undergone stem-cell transplantation for relapsed acute leukemia were treated with the genetically modified T cells. The cells were detected in peripheral blood from all five patients and increased in number over time, despite their constitutive transgene expression. A single dose of dimerizing drug, given to four patients in whom GVHD developed, eliminated more than 90% of the modified T cells within 30 minutes after administration and ended the GVHD without recurrence. The iCasp9 cell-suicide system may increase the safety of cellular therapies and expand their clinical applications. (Funded by the National Heart, Lung, and Blood Institute and the National Cancer Institute; ClinicalTrials.gov number, NCT00710892.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Exosomes in cancer: small particle, big player

            Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Malignant effusions and immunogenic tumour-derived exosomes.

              Exosomes derived from tumours are small vesicles released in vitro by tumour cell lines in culture supernatants. To assess the role of these exosomes in vivo, we examined malignant effusions for their presence. We also investigated whether these exosomes could induce production of tumour-specific T cells when pulsed with dendritic cells. We isolated exosomes by ultracentrifugation on sucrose and D(2)O gradients of 11 malignant effusions. We characterised exosomes with Western blot analyses, immunoelectron microscopy, and in-vitro stimulations of autologous T lymphocytes. Malignant effusions accumulate high numbers of membrane vesicles that have a mean diameter of 80 nm (SD 30). These vesicles have antigen-presenting molecules (MHC class-I heat-shock proteins), tetraspanins (CD81), and tumour antigens (Her2/Neu, Mart1, TRP, gp100). These criteria, including their morphological characteristics, indicate the similarities between these vesicles and exosomes. Exosomes from patients with melanoma deliver Mart1 tumour antigens to dendritic cells derived from monocytes (MD-DCs) for cross presentation to clones of cytotoxic T lymphocytes specific to Mart1. In seven of nine patients with cancer, lymphocytes specific to the tumour could be efficiently expanded from peripheral blood cells by pulsing autologous MD-DCs with autologous ascitis exosomes. In one patient tested, we successfully expanded a restricted T-cell repertoire, which could not be recovered carcinomatosis nodules. Exosomes derived from tumours accumulate in ascites from patients with cancer. Ascitis exosomes are a natural and new source of tumour-rejection antigens, opening up new avenues for immunisation against cancers.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                29 December 2015
                19 October 2015
                : 6
                : 42
                : 44179-44190
                Affiliations
                1 Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
                2 Guangxi Key Laboratory for Transplantation Medicine, Institute of Transplant Medicine, 303 Hospital of People's Liberation Army, Nanning, China
                3 The Biomedical Research Center, University of British Columbia, Vancouver, Canada
                4 Department of Surgery, University of British Columbia, Vancouver, Canada
                Author notes
                Correspondence to: Long-Jun Dai, ljdai@ 123456mail.ubc.ca
                Article
                10.18632/oncotarget.6175
                4792550
                26496034
                881d151b-aece-400e-9dea-9f6401d14674
                Copyright: © 2015 Tang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 August 2015
                : 6 October 2015
                Categories
                Review

                Oncology & Radiotherapy
                immunotherapy,chimeric antigen receptor (car),exosomes,cancer therapy,extracellular vesicles

                Comments

                Comment on this article