3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Urinary KIM-1 in children undergoing nephrotoxic antineoplastic treatment: a prospective cohort study

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          A basic science view of acute kidney injury biomarkers.

          Over the last decade, significant progress has been made in the identification and validation of novel biomarkers as well as refinements in the use of serum creatinine as a marker of kidney function. These advances have taken advantage of laboratory investigations, which have identified these novel molecules that serve important biological functions in the pathogenesis of acute kidney injury (AKI). As we advance and validate these markers for clinical studies in AKI, we recognize that they serve not only to improve our understanding of AKI, but they could also serve as potential targets for the treatment of AKI. This review will underscore the biological basis of specific biomarkers that will contribute to the advancement in the treatment and outcomes of AKI.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery.

            AKI is common and novel biomarkers may help provide earlier diagnosis and prognosis of AKI in the postoperative period. This was a prospective, multicenter cohort study involving 1219 adults and 311 children consecutively enrolled at eight academic medical centers. Performance of two urine biomarkers, kidney injury molecule-1 (KIM-1) and liver fatty acid-binding protein (L-FABP), alone or in combination with other injury biomarkers during the perioperative period was evaluated. AKI was defined as doubling of serum creatinine or need for acute dialysis. KIM-1 peaked 2 days after surgery in adults and 1 day after surgery in children, whereas L-FABP peaked within 6 hours after surgery in both age groups. In multivariable analyses, the highest quintile of the first postoperative KIM-1 level was associated with AKI compared with the lowest quintile in adults, whereas the first postoperative L-FABP was not associated with AKI. Both KIM-1 and L-FABP were not significantly associated with AKI in adults or children after adjusting for other kidney injury biomarkers (neutrophil gelatinase-associated lipocalin and IL-18). The highest area under the curves achievable for discrimination for AKI were 0.78 in adults using urine KIM-1 from 6 to 12 hours, urine IL-18 from day 2, and plasma neutrophil gelatinase-associated lipocalin from day 2 and 0.78 in children using urine IL-18 from 0 to 6 hours and urine L-FABP from day 2. Postoperative elevations of KIM-1 associate with AKI and adverse outcmes in adults but were not independent of other AKI biomarkers. A panel of multiple biomarkers provided moderate discrimination for AKI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-dose methotrexate-induced nephrotoxicity in patients with osteosarcoma.

              High-dose methotrexate (HDMTX)-induced renal dysfunction can be life threatening, because it delays methotrexate (MTX) excretion, thereby exacerbating the other toxicities of MTX. HDMTX-induced nephrotoxicity has been managed with high-dose leucovorin, dialysis-based methods of MTX removal, thymidine, and with the recombinant enzyme, carboxypeptidase-G2 (CPDG2), which cleaves MTX to inactive metabolites. The objectives of the current study were to estimate the current incidence of HDMTX-induced renal dysfunction in patients with osteosarcoma and to compare the efficacy and recovery of renal function for dialysis-based methods of MTX removal with treatment using CPDG2. The literature was reviewed for osteosarcoma trials, use of dialysis-based methods for MTX removal, and reports of MTX-induced nephrotoxicity, including information regarding recovery of renal function. Clinical trial databases of select osteosarcoma studies were reviewed. The efficacy of CPDG2 and renal recovery after CPDG2 rescue was obtained from the database of a compassionate-release trial. Approximately 1.8% of patients with osteosarcoma (68 of 3887 patients) who received HDMTX developed nephrotoxicity Grade >/= 2. The mortality rate among those patients was 4.4% (3 of 68 patients). Dialysis-based methods of MTX removal were used frequently but had limited effectiveness in removing MTX compared with the rapid reductions > 98% in plasma MTX concentrations achieved with CPDG2. CPDG2 did not appear to increase the time to recovery of renal function compared with supportive treatment that included dialysis-based methods. HDMTX-induced renal dysfunction continues to occur in approximately 1.8% of patients with osteosarcoma who are treated on clinical protocols with optimal supportive care. For patients with delayed MTX excretion and high plasma MTX concentrations, CPDG2 should be considered over hemodialysis to lower plasma MTX concentrations rapidly and efficiently. Copyright 2004 American Cancer Society.
                Bookmark

                Author and article information

                Journal
                Pediatric Nephrology
                Pediatr Nephrol
                Springer Nature
                0931-041X
                1432-198X
                December 2015
                August 7 2015
                December 2015
                : 30
                : 12
                : 2207-2213
                Article
                10.1007/s00467-015-3178-3
                8813e19d-45d6-47de-8ac5-7633a9e8628d
                © 2015
                History

                Comments

                Comment on this article