2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tetrahedral framework nucleic acids for improving wound healing

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wounds are one of the most common health issues, and the cost of wound care and healing has continued to increase over the past decade. In recent years, there has been growing interest in developing innovative strategies to enhance the efficacy of wound healing. Tetrahedral framework nucleic acids (tFNAs) have emerged as a promising tool for wound healing applications due to their unique structural and functional properties. Therefore, it is of great significance to summarize the applications of tFNAs for wound healing. This review article provides a comprehensive overview of the potential of tFNAs as a novel therapeutic approach for wound healing. In this review, we discuss the possible mechanisms of tFNAs in wound healing and highlight the role of tFNAs in modulating key processes involved in wound healing, such as cell proliferation and migration, angiogenesis, and tissue regeneration. The targeted delivery and controlled release capabilities of tFNAs offer advantages in terms of localized and sustained delivery of therapeutic agents to the wound site. In addition, the latest research progress on tFNAs in wound healing is systematically introduced. We also discuss the biocompatibility and biosafety of tFNAs, along with their potential applications and future directions for research. Finally, the current challenges and prospects of tFNAs are briefly discussed to promote wider applications.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Exploring the full spectrum of macrophage activation.

          Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wound repair and regeneration.

            The repair of wounds is one of the most complex biological processes that occur during human life. After an injury, multiple biological pathways immediately become activated and are synchronized to respond. In human adults, the wound repair process commonly leads to a non-functioning mass of fibrotic tissue known as a scar. By contrast, early in gestation, injured fetal tissues can be completely recreated, without fibrosis, in a process resembling regeneration. Some organisms, however, retain the ability to regenerate tissue throughout adult life. Knowledge gained from studying such organisms might help to unlock latent regenerative pathways in humans, which would change medical practice as much as the introduction of antibiotics did in the twentieth century.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Factors affecting wound healing.

              Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutaneous wound healing and the potential cellular and/or molecular mechanisms involved. The factors discussed include oxygenation, infection, age and sex hormones, stress, diabetes, obesity, medications, alcoholism, smoking, and nutrition. A better understanding of the influence of these factors on repair may lead to therapeutics that improve wound healing and resolve impaired wounds.
                Bookmark

                Author and article information

                Contributors
                lujing28@mail.sysu.edu.cn
                lyzhang@gdpu.edu.cn
                sundp@gdpu.edu.cn
                Journal
                J Nanobiotechnology
                J Nanobiotechnology
                Journal of Nanobiotechnology
                BioMed Central (London )
                1477-3155
                16 March 2024
                16 March 2024
                2024
                : 22
                : 113
                Affiliations
                [1 ]Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Center for Drug Research and Development, Guangdong Pharmaceutical University, ( https://ror.org/02vg7mz57) Guangzhou, 510006 Guangdong China
                [2 ]Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, ( https://ror.org/02gr42472) Guangzhou, 510699 Guangdong China
                [3 ]National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, ( https://ror.org/0064kty71) Guangzhou, 510006 Guangdong China
                [4 ]Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, ( https://ror.org/01sfm2718) Nanjing, 210009 Jiangsu China
                Article
                2365
                10.1186/s12951-024-02365-z
                10943864
                38491372
                8812cf78-2869-46d6-8357-16839abfb594
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 8 November 2023
                : 21 February 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82173808
                Award ID: 82003710
                Funded by: FundRef http://dx.doi.org/10.13039/501100003453, Natural Science Foundation of Guangdong Province;
                Award ID: 2021B1515020100
                Categories
                Review
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Biotechnology
                tetrahedral framework nucleic acids,wound healing,dna nanomaterials,tissue regeneration

                Comments

                Comment on this article