26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic Acid Methyl Ester Inhibited Hepatocellular Carcinoma Growth in Bel-7402 Cells and Its Resistant Variants by Activation of NOX4 and SIRT3

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          {2-[1-(3-Methoxycarbonylmethyl-1H-indol-2-yl)-1-methyl-ethyl]-1H-indol-3-yl}-acetic acid methyl ester (MIAM) is a novel indole compound, which possessed high efficacy against many cancers xenografted in mice without obvious toxicity. In this study, we aimed to investigate the effects of MIAM on human hepatocellular carcinoma (HCC) Bel-7402 cells and its resistant variants Bel-7402/5FU. MIAM inhibited the growth of HCC more potent in Bel-7402/5FU cells than its parent cells. MIAM increased cellular reactive oxygen species (ROS) levels, induced cell apoptosis, and arrested cell cycle in G 0/G 1 phase. MIAM might exert its action on Bel-7402/5FU cells through activation of NADPH oxidase 4 (NOX4)/p22 phox, Sirtuin3 (SIRT3)/SOD2, and SIRT3/p53/p21 Waf1/Cip pathways. MIAM might inhibit HCC growth through the modulation of SIRT3. When SIRT3 was silenced, the inhibitory effect of MIAM on Bel-7402/5FU was lowered, showing the characteristic of resistance against MIAM, whereas Bel-7402/5FU cells with high expression of SIRT3 by SIRT3 adenovirus infection demonstrated the high sensitivity to MIAM. These results suggested that MIAM might exert its action against Bel-7402/5FU growth through upregulation of SIRT3. We suggested that MIAM might be a promising candidate compound which could develop as a potent anticancer agent targeting NOX4 and SIRT3 activation.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Role of reactive oxygen species (ROS) in apoptosis induction.

          Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases.

            Reactive oxygen species (ROS) are important signal transduction molecules in ligand-induced signaling, regulation of cell growth, differentiation, apoptosis and motility. Recently NADPH oxidases (Nox) homologous to Nox2 (gp91phox) of phagocyte cytochrome b558 have been identified, which are an enzymatic source for ROS generation in epithelial cells. This study was undertaken to delineate the requirements for ROS generation by Nox4. Nox4, in contrast to other Nox proteins, produces large amounts of hydrogen peroxide constitutively. Known cytosolic oxidase proteins or the GTPase Rac are not required for this activity. Nox4 associates with the protein p22phox on internal membranes, where ROS generation occurs. Knockdown and gene transfection studies confirmed that Nox4 requires p22phox for ROS generation. Mutational analysis revealed structural requirements affecting expression of the p22phox protein and Nox activity. Mechanistic insight into ROS regulation is significant for understanding fundamental cell biology and pathophysiological conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cellular and molecular mechanisms of hepatocellular carcinoma: an update.

              Hepatocellular carcinoma (HCC) is the most common primary malignant tumor that accounts for ~80 % of all liver cancer cases worldwide. It is a multifactorial disease caused by a variety of risk factors and often develops in the background of underlying cirrhosis. A number of cellular phenomena, such as tumor microenvironment, inflammation, oxidative stress, and hypoxia act in concert with various molecular events to facilitate tumor initiation, progression, and metastasis. The emergence of microRNAs and molecular-targeted therapies adds a new dimension in our efforts to combat this deadly disease. Intense research in this multitude of areas has led to significant progress in our understanding of cellular processes and molecular mechanisms that occur during multistage events that lead to hepatocarcinogenesis. In this review, we discuss the current knowledge of HCC, focusing mainly on advances that have occurred during the past 5 years and on the development of novel therapeutics for liver cancer.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                15 April 2015
                : 2015
                : 491205
                Affiliations
                1Department of Pharmacology, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
                2Department of Medicinal Chemistry, School of Chemical Biology & Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
                3Medical Experiments and Testing Center, Capital Medical University, Beijing 100069, China
                Author notes

                Academic Editor: Victor Kuete

                Article
                10.1155/2015/491205
                4413889
                87f79a96-a629-4a88-98bc-b231464b549b
                Copyright © 2015 Ye Li et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 October 2014
                : 1 January 2015
                Categories
                Research Article

                Comments

                Comment on this article