0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rule and Neural Network-Based Image Segmentation of Mice Vertebrae Images

      research-article
      1 , , 2
      ,
      Cureus
      Cureus
      machine learning, segmentation, image, mouse, bone

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Image segmentation is a fundamental technique that allows researchers to process images from various sources into individual components for certain applications, such as visual or numerical evaluations. Image segmentation is beneficial when studying medical images for healthcare purposes. However, existing semantic image segmentation models like the U-net are computationally intensive. This work aimed to develop less complicated models that could still accurately segment images.

          Methodology

          Rule-based and linear layer neural network models were developed in Mathematica and trained on mouse vertebrae micro-computed tomography scans. These models were tasked with segmenting the cortical shell from the whole bone image. A U-net model was also set up for comparison.

          Results

          It was found that the linear layer neural network had comparable accuracy to the U-net model in segmenting the mice vertebrae scans.

          Conclusions

          This work provides two separate models that allow for automated segmentation of mouse vertebral scans, which could be potentially valuable in applications such as pre-processing the murine vertebral scans for further evaluations of the effect of drug treatment on bone micro-architecture.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Normal bone anatomy and physiology.

          This review describes normal bone anatomy and physiology as an introduction to the subsequent articles in this section that discuss clinical applications of iliac crest bone biopsy. The normal anatomy and functions of the skeleton are reviewed first, followed by a general description of the processes of bone modeling and remodeling. The bone remodeling process regulates the gain and loss of bone mineral density in the adult skeleton and directly influences bone strength. Thorough understanding of the bone remodeling process is critical to appreciation of the value of and interpretation of the results of iliac crest bone histomorphometry. Osteoclast recruitment, activation, and bone resorption is discussed in some detail, followed by a review of osteoblast recruitment and the process of new bone formation. Next, the collagenous and noncollagenous protein components and function of bone extracellular matrix are summarized, followed by a description of the process of mineralization of newly formed bone matrix. The actions of biomechanical forces on bone are sensed by the osteocyte syncytium within bone via the canalicular network and intercellular gap junctions. Finally, concepts regarding bone remodeling, osteoclast and osteoblast function, extracellular matrix, matrix mineralization, and osteocyte function are synthesized in a summary of the currently understood functional determinants of bone strength. This information lays the groundwork for understanding the utility and clinical applications of iliac crest bone biopsy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of trabecular bone functional adaptation: what have we learned from trabecular analyses in extant hominoids and what can we apply to fossils?

            Many of the unresolved debates in palaeoanthropology regarding evolution of particular locomotor or manipulative behaviours are founded in differing opinions about the functional significance of the preserved external fossil morphology. However, the plasticity of internal bone morphology, and particularly trabecular bone, allowing it to respond to mechanical loading during life means that it can reveal greater insight into how a bone or joint was used during an individual's lifetime. Analyses of trabecular bone have been commonplace for several decades in a human clinical context. In contrast, the study of trabecular bone as a method for reconstructing joint position, joint loading and ultimately behaviour in extant and fossil non-human primates is comparatively new. Since the initial 2D studies in the late 1970s and 3D analyses in the 1990 s, the utility of trabecular bone to reconstruct behaviour in primates has grown to incorporate experimental studies, expanded taxonomic samples and skeletal elements, and improved methodologies. However, this work, in conjunction with research on humans and non-primate mammals, has also revealed the substantial complexity inherent in making functional inferences from variation in trabecular architecture. This review addresses the current understanding of trabecular bone functional adaptation, how it has been applied to hominoids, as well as other primates and, ultimately, how this can be used to better interpret fossil hominoid and hominin morphology. Because the fossil record constrains us to interpreting function largely from bony morphology alone, and typically from isolated bones, analyses of trabecular structure, ideally in conjunction with that of cortical structure and external morphology, can offer the best resource for reconstructing behaviour in the past.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Variability and reproducibility in deep learning for medical image segmentation

              Medical image segmentation is an important tool for current clinical applications. It is the backbone of numerous clinical diagnosis methods, oncological treatments and computer-integrated surgeries. A new class of machine learning algorithm, deep learning algorithms, outperforms the results of classical segmentation in terms of accuracy. However, these techniques are complex and can have a high range of variability, calling the reproducibility of the results into question. In this article, through a literature review, we propose an original overview of the sources of variability to better understand the challenges and issues of reproducibility related to deep learning for medical image segmentation. Finally, we propose 3 main recommendations to address these potential issues: (1) an adequate description of the framework of deep learning, (2) a suitable analysis of the different sources of variability in the framework of deep learning, and (3) an efficient system for evaluating the segmentation results.
                Bookmark

                Author and article information

                Journal
                Cureus
                Cureus
                2168-8184
                Cureus
                Cureus (Palo Alto (CA) )
                2168-8184
                25 July 2022
                July 2022
                : 14
                : 7
                : e27247
                Affiliations
                [1 ] Computer Science, BASIS Independent Silicon Valley, San Jose, USA
                [2 ] Department of Mechanical Engineering, University of California, Berkeley, USA
                Author notes
                Indeever Madireddy indeever@ 123456gmail.com
                Article
                10.7759/cureus.27247
                9401637
                36039207
                87c92dd3-4a32-47da-bb32-d2ef06378e08
                Copyright © 2022, Madireddy et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 23 July 2022
                Categories
                Orthopedics

                machine learning,segmentation,image,mouse,bone
                machine learning, segmentation, image, mouse, bone

                Comments

                Comment on this article