1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Clinical Study of 8 Cases of CHD2 Gene Mutation–Related Neurological Diseases and Their Mechanisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The chromodomain helicase DNA-binding protein 2 ( CHD2) gene, is an ATPase and part of the CHD family of chromatin remodelers. Mutations in the CHD2 gene are inherited in an autosomal-dominant manner and can lead to intellectual disability, epilepsy, and autism. We investigated the clinical characteristics of CHD2-related conditions and their possible pathogenesis.

          Methods: We collected and analysed the clinical data of patients that were identified as having CHD2 mutations. Genetic testing was performed using targeted sequencing or whole-exome sequencing. We analysed the expression of CHD2 and repressor element 1-silencing transcription factor ( REST) in blood samples using quantitative PCR and the conservation of the mutations. The CHD2 mutations we identified were compared with the known mutations reported in the CHD2-related literature.

          Results: Eight patients with CHD2 gene mutations were analysed. Six mutations were identified; four were unreported previously (c.670C>T; c.4012A>C; c.2416dup; c.1727–1728insAT), and two were known mutations: c.5035C>T (two cases) and c.4173dup (two cases). Among these mutations, seven were de novo mutations, and one could not be determined because the parents refused genetic testing. The clinical manifestations included mild or severe intellectual disability, epilepsy, and behavioural abnormalities. Quantitative PCR showed that the CHD2 gene expression levels among the patients, parents, and the controls were not significantly different. The levels of REST gene expression in the patients were significantly higher than those of the controls; thus, mutation of the CHD2 gene led to an increase in the expression level of the REST gene. The mutations reported were all located in conserved positions in different species. Among the various medications administered for treatment, valproate showed the best results for the treatment of epilepsy caused by CHD2 gene mutation.

          Conclusion: Mutation in CHD2 did not lead to a significant decrease in its expression level, indicating that the clinical phenotype was unrelated to its expression level, and the mutant protein may retain some function. Most of the mutations relatively stable. In addition, the clinical manifestations from the same mutation in the CHD2 gene were different among the known cases; this may be related to the regulation of REST or other regulatory factors.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Prevalence and architecture of de novo mutations in developmental disorders

          (2017)
          Summary Individuals with severe, undiagnosed developmental disorders (DDs) are enriched for damaging de novo mutations (DNMs) in developmentally important genes. We exome sequenced 4,293 families with individuals with DDs, and meta-analysed these data with another 3,287 individuals with similar disorders. We show that the most significant factors influencing the diagnostic yield of DNMs are the sex of the affected individual, the relatedness of their parents, whether close relatives are affected and parental ages. We identified 94 genes enriched for damaging DNMs, including 14 without previous compelling evidence. We have characterised the phenotypic diversity among these disorders. We estimate that 42% of our cohort carry pathogenic DNMs in coding sequences, and approximately half disrupt gene function, with the remainder resulting in altered-function. We estimate that developmental disorders caused by DNMs have an average birth prevalence of 1 in 213 to 1 in 448, depending on parental age. Given current global demographics, this equates to almost 400,000 children born per year.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1

            Introductory Epileptic encephalopathies are a devastating group of epilepsies with a poor prognosis, for which the majority have unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate epileptic encephalopathy genes in 500 patients to identify novel genes and investigate the phenotypic spectrum of known genes. Overall, we identify pathogenic mutations in 10% of our cohort. Six of the 46 candidate genes had one or more pathogenic variants, collectively accounting for 3% of our cohort. We show that de novo CHD2 and SYNGAP1 mutations are novel causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases respectively. We also further expand the phenotypic spectrum for SCN1A, SCN2A, and SCN8A mutations. To our knowledge, this is the largest cohort of patients with epileptic encephalopathies to undergo targeted resequencing. Implementation of this rapid and efficient method will change diagnosis and understanding of the molecular etiologies of these disorders. Epilepsy is one of the most common neurological disorders with a lifetime incidence of 3%. Epileptic encephalopathies are a devastating group of epilepsies characterized by refractory seizures and cognitive arrest or regression associated with ongoing epileptic activity, and typically carry a poor prognosis 1 . De novo mutations in several known genes are responsible for some epileptic encephalopathies 2 . Furthermore, we and others have shown that rare, de novo copy number variants (CNVs) account for up to ~8% of cases 3, 4 . Despite this recent progress, making a genetic diagnosis in a patient can be challenging as there is both genetic heterogeneity for a given epilepsy syndrome and phenotypic heterogeneity for a specific gene. The full phenotypic spectrum associated with mutations in known epileptic encephalopathy genes is not known. Very few studies have investigated the role of any given gene across a wide spectrum of epileptic encephalopathy syndromes. This makes serial gene testing in the clinical setting an inefficient and expensive process, after which the vast majority of cases remain unexplained. Furthermore, it is clear that discovery of additional genes that cause epileptic encephalopathies is needed to facilitate genetic diagnosis. Here, we take advantage of a high-throughput targeted sequencing approach to perform comprehensive sequence analysis of 65 genes (19 known genes and 46 candidate genes) (Supplementary Fig. 1) in 500 patients with a range of epileptic encephalopathy phenotypes (Table 1). Candidate genes were selected from epilepsy-associated CNVs (n=33) or because mutations cause associated neurodevelopmental disorders or other epilepsy syndromes (n=13). Using this approach, we (i) identify novel epileptic encephalopathy genes and (ii) delineate the phenotypic spectrum and mutation frequency for both known and novel epileptic encephalopathy genes. Overall, 91% of the target (65 genes) was sequenced at >25X coverage, required for accurate variant calling (Supplementary Fig. 2). We achieved 91% sensitivity across 685 variants (161 loci) from 12 samples that had previously undergone exome sequencing and 100% sensitivity for 24 known variants in previously tested patients; these patients were not included in the discovery cohort. We detected one or more pathogenic or likely pathogenic mutations in six of our 46 candidate genes, with multiple individuals carrying mutations in either of the two novel epileptic encephalopathy genes, CHD2 (NM_001271.3, NP_001262.3) and SYNGAP1 (NM_006772.2, NP_006763.2) (Table 1, 2, Fig. 1). Remarkably, we detected six de novo variants in the candidate gene, CHD2 (Fig. 1,2), selected from within the critical interval of 15q26.1 deletions detected in patients with a range of epileptic encephalopathies (Supplementary Fig. 3) 5, 6 . Four mutations lead to premature truncation of CHD2 (Table 2). Two de novo missense variants disrupt highly conserved residues within the SNF2-related helicase/ATPase domain (p.Trp548Arg and p.Leu823Pro), and are predicted to be damaging by both PolyPhen2 and SIFT. CHD2 codes for a member of the chromodomain helicase DNA-binding family of proteins and is characterized by the presence of chromatin remodeling, chromo (chromatin organization modifier) and SNF2-related helicase/ATPase domains. These domains suggest function of this protein as a chromatin remodeler 7 . While functional studies in CHD2 are limited, studies of another CHD protein family member, CHD7, have shown that the helicase domain is responsible for ATP-dependent nucleosome remodeling, an integral process in target gene regulation. Furthermore, in vivo studies of human CHD7 mutations within the helicase domain, which cause CHARGE syndrome, resulted in decreased remodeling ability 8 . These results suggest that the two de novo missense mutations described here may disrupt CHD2 function in a similar manner, while truncating mutations likely result in haploinsufficiency. The six patients with CHD2 mutations had distinctive features with a median seizure onset of 18 months (range 1–3 years, Table 2): myoclonic seizures in all, photosensitivity in three and all had ID, ranging from moderate to severe. A de novo CHD2 frameshift mutation was reported in a proband with ID and absence seizures 9 and a de novo missense mutation in an individual with autism spectrum disorder (ASD) 10 . These results suggest that mutations in CHD2 contribute to a broad spectrum of neurodevelopmental disorders. Notably, recent studies implicate de novo mutations in CHD8 in patients with ASD 11 . Interestingly, three genes of the chromodomain family (CHD2, CHD7, CHD8) have now been implicated in disorders that impact the neurodevelopmental system. Further studies of this nine-member gene family will determine the role of each across the spectrum of neurodevelopmental disorders, and provide exciting new avenues of research. We identified nine pathogenic or likely pathogenic variants in four of the 13 ‘epilepsy-associated’ genes (Fig. 1). We found five truncating variants in SYNGAP1 (Fig. 2). Patients with SYNGAP1 mutations had median seizure onset of 14 months (mean 14 months, range 6 months to 3 years) (Table 2). They had multiple seizure types, early developmental delay and subsequent regression. Outcome was poor with moderate to severe ID. SYNGAP1 mutations have been associated with ID and, although most patients have epilepsy, seizures are typically well controlled 9, 12–18 . Our study represents the first cases of epileptic encephalopathies with SYNGAP1 mutations. These observations suggest that epilepsy is a core feature of both static and progressive encephalopathies associated with SYNGAP1 mutations, and carry important implications for diagnostic testing. Variants were identified in three additional ‘epilepsy associated genes’. There were two de novo variants in MEF2C (NM_002397.4, NP_002388.2), a missense variant and a stop-loss variant (p.*464SerExt*?). Furthermore, we found de novo pathogenic variants in MBD5 (NM_018328.4, NP_060798.2) (Thr157Glnfs*4) and GABRG2 (NM_000816.3, NP_000807.2)(p.Arg323Gln) (Table 2). We detected a premature truncation mutation (p.Tyr805*) in the CNV candidate gene, HNRNPU (NM_031844.2, NP_114032.2). The p.Tyr805* change arose as a result of two consecutive single nucleotide changes c.471T>C and c.472A>T (Supplementary Fig. 4) that occur two amino acids upstream of the termination codon. Neither variant was maternally inherited; paternal DNA was not available. A recent report identified HNRNPU as a candidate for the ID and seizure phenotypes of probands with 1q44 microdeletions 19 . In addition, a de novo splice-site variant was identified in a proband with a complex neurodevelopmental phenotype including epilepsy 20 . Collectively, these data suggest that haploinsufficiency of HNRNPU is associated with epileptic encephalopathy as well as ID, though further phenotype-genotype correlation will improve our understanding of the HNRNPU phenotypic spectrum. We identified 32 variants fulfilling our criteria for pathogenicity and an additional four variants that are likely pathogenic in ten of 19 known epileptic encephalopathy genes (Fig. 1, Table 1, Table 3). We identified multiple patients with mutations in STXBP1, CDKL5, SCN1A, SCN2A, PCDH19 and KCNQ2, accounting for 69% (36/52) of all mutation-positive individuals in our cohort. We detected an additional 16 rare variants in six of these 19 known genes for which we were unable to conduct segregation analysis; it is probable that a number of these variants are also pathogenic (Supplementary Table 1). The phenotypes identified in patients with mutations in known genes are provided (Table 3), and for some we expand the known phenotypic spectrum. For example, we identified a homozygous recessive missense mutation in PNKP in a single proband with unclassified epileptic encephalopathy. PNKP mutations are associated with early infantile epileptic encephalopathy comprising microcephaly, early-onset intractable seizures and developmental delay 21 . By contrast, our patient did not have microcephaly (head circumference 50th centile) or developmental delay but had normal cognition despite refractory epilepsy with multiple seizure types. Also, three patients with SCN1A mutations presented with an epilepsy-aphasia phenotype, of which two also had FS+. SCN1A mutations are well known to be associated with genetic epilepsy with febrile seizures plus (GEFS+) but have not previously been reported with epilepsy-aphasia syndromes 22, 23 . It is possible that the SCN1A mutation is not responsible for the epilepsy-aphasia syndrome but equally it could be a modifier predisposing the individual to this group of epileptic encephalopathies. Further work is warranted to clarify this association, perhaps most effectively with exome-sequencing in these patients. We detected five variants in SCN2A, which encodes the α2 subunit of the voltage gated sodium channel. To date, the majority of SCN2A mutations have been associated with the self-limited autosomal dominant syndrome of benign familial neonatal-infantile seizures (BFNIS) 24 . Previously, only three de novo variants have been reported in patients with epileptic encephalopathies 25, 26 . Interestingly our five cases show similar variability in the range of onset seen in BFNIS with three beginning in the neonatal period (11 hours to 2 days) and two in infancy (6 weeks, 13 months). Two had relatively early offset of seizures at 5 weeks and 7 months. The refractory nature of seizures did not correlate with intellectual outcome, which ranged from mild (2) to severe (3) intellectual disability. We conclude that SCN2A is an important contributor to the overall burden of epileptic encephalopathies, accounting for 1% of cases. We also identified a pathogenic missense mutation (p.Leu1290Val) in SCN8A. To date, only a single de novo SCN8A mutation (p.Asn1768Asp) has been described in a proband with severe epileptic encephalopathy and sudden unexplained death in epilepsy 27 . Here we describe a second patient presenting with an epileptic encephalopathy beginning at 18 months. Interestingly, this variant was paternally inherited, though the father was shown to have somatic mosaicism (13% mutant allele) supporting its pathogenic effect as seen in other genetic encephalopathies with parental mosaicism 28 . The findings in this large series of patients with hitherto unsolved epileptic encephalopathies allows us to begin to frame the overall genetic architecture of this group of disorders. We identified pathogenic or likely pathogenic mutations in 10% of our cohort, with mutations in 16 genes. However, this mutation rate is likely to be an underestimation of the true contribution of each gene to the overall burden of epileptic encephalopathies. Our cohort excluded patients with previously identified mutations, and we were unable to conduct segregation analysis for a subset of variants we identified, some of which are likely to be pathogenic. Furthermore, as larger numbers of patients with mutations of specific genes are identified, distinctive epileptic encephalopathy phenotypes are likely to emerge. Taken together, with up to 8% rare CNVs in epileptic encephalopathy patients in an earlier analysis of a subset of this series 3 , we can now collectively ascribe causality for ~18% of all epileptic encephalopathies of unknown cause. The genetic heterogeneity of epileptic encephalopathies is considerable; likely pathogenic variants were found in nine known or novel genes (see Fig. 2). Even the most commonly mutated genes in our study each account for only up to 1.6% of cases. Notably, we elucidate new genes found to be commonly mutated in epileptic encephalopathies, with CHD2, SYNGAP1 and SCN2A accounting for 1–1.2% of cases each, a frequency similar to that of mutations in SCN1A, STXBP1 and CDKL5 in our cohort. However, no mutations were seen in nine other known genes (ARX, FOXG1, KCNT1, MECP2, PLCB1, SLC25A22, SLC2A1, SPTAN1, ARHGEF9) in 500 patients. These results suggest that pathogenic mutations in these genes, while important, are rare causes of epileptic encephalopathies ( 0.70, QUAL 25X for each gene. Rare variant segregation analysis Where family members were available, segregation analysis was carried out for all rare (not present in ESP6500 controls), possibly damaging (non-synonymous, essential splice-site or frameshift) variants for all 65 target genes. This analysis was performed using a ‘MIP-pick’ strategy. We selected and re-pooled only the MIPs that captured the genomic sequence harboring the rare variant of interest and performed target enrichment PCR and sequencing as above for all relevant probands and family members. This approach allowed us to sequence variants at very high depth and detect somatic mosaicism in parents. Criteria for pathogenicity of rare variants For those rare, possibly damaging variants where segregation analysis could be performed, we required the variant to meet one of the following criteria to constitute a novel pathogenic variant. Pathogenic variants: (i) arose de novo, (ii) segregated with the disorder, (iii) were inherited from a parent with somatic mosaicism, or (iv) adhered to a recessive, X-linked or parent-of-origin mode of inheritance, where applicable (Supplementary Fig. 1). In certain instances we were unable to determine the inheritance of a rare variant due to the unavailability of DNA from one or more parent. It is likely that a subset of these variants also cause disease, though here we report only those variants that are likely to lead to protein truncation (i.e. splice-site, nonsense, frameshift, stop-loss) as being ‘likely pathogenic’. Additionally, two missense mutations in known genes (STXBP1, SCN2A) were interpreted to be ‘likely pathogenic’ based on the high incidence of pathogenic missense mutations in these genes, which was further supported by the available parent not carrying the variant. We performed microsatellite analysis using the PowerPlex S5 system [Promega] in all parents of probands with a de novo mutation to confirm maternity and paternity. Supplementary Material 1
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              De novo mutations in the classic epileptic encephalopathies

              Epileptic encephalopathies (EE) are a devastating group of severe childhood epilepsy disorders for which the cause is often unknown. Here, we report a screen for de novo mutations in patients with two classical EE: infantile spasms (IS, n=149) and Lennox-Gastaut Syndrome (LGS, n=115). We sequenced the exomes of 264 probands, and their parents, and confirmed 329 de novo mutations. A likelihood analysis showed a significant excess of de novo mutations in the ~4,000 genes that are the most intolerant to functional genetic variation in the human population (p=2.9 × 10−3). Among these are GABRB3 with de novo mutations in four patients and ALG13 with the same de novo mutation in two patients; both genes show clear statistical evidence of association. Given the relevant site-specific mutation rates, the probabilities of these outcomes occurring by chance are p=4.1 × 10−10 and p=7.8 × 10−12, respectively. Other genes with de novo mutations in this cohort include: CACNA1A, CHD2, FLNA, GABRA1, GRIN1, GRIN2B, HDAC4, HNRNPU, IQSEC2, MTOR, and NEDD4L. Finally, we show that the de novo mutations observed are enriched in specific gene sets including genes regulated by the Fragile X protein (p<10−8), as was reported for autism spectrum disorders (ASD) 1 .
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                21 March 2022
                2022
                : 10
                : 853127
                Affiliations
                [1] 1 Department of Neurology , Shanghai Children’s Hospital , Shanghai JiaoTong University , Shanghai, China
                [2] 2 Department of Clinical Laboratory , Shanghai Children’s Hospital , Shanghai Jiao Tong University , Shanghai, China
                [3] 3 NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology and Shanghai Key Laboratory of Embryo and Reproduction Engineering , Shanghai, China
                Author notes

                Edited by: Zi-Bing Jin, Capital Medical University, China

                Reviewed by: Fei Yin, Xiangyang Central Hospital, China

                Kimberly Aldinger, Seattle Children’s Research Institute, United States

                *Correspondence: Yucai Chen, chenyc@ 123456shchildren.com.cn
                [ † ]

                These authors have contributed equally to this work and share first authorship

                This article was submitted to Molecular and Cellular Pathology, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                853127
                10.3389/fcell.2022.853127
                8977407
                35386198
                87490477-8dc9-49c4-acef-a0d616a806e8
                Copyright © 2022 Luo, Sun, Wang, Lin, Yuan, Wang, Zhang, Ji, Liu, Wu, Lan, Zhang, Yan, Zeng and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 12 January 2022
                : 01 March 2022
                Categories
                Cell and Developmental Biology
                Original Research

                chromodomain helicase dna-binding protein 2 (chd2) gene,neurological diseases,epilepsy,repressor element 1-silencing transcription factor,expression

                Comments

                Comment on this article