26
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient production of mannosylerythritol lipids by a marine yeast Moesziomyces aphidis XM01 and their application as self-assembly nanomicelles

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants because of their excellent physicochemical properties, high environmental compatibility, and various biological functions. In this study, a mangrove yeast strain Moesziomyces aphidis XM01 was identified and used for efficient extracellular MEL production. The MEL titer reached 64.5 ± 0.7 g/L at flask level within 7 days with the optimized nitrogen and carbon source of 2.0 g/L NaNO 3 and 70 g/L soybean oil. Furthermore, during a 10-L two-stage fed-batch fermentation, the final MEL titer reached 113.6 ± 3.1 g/L within 8 days, with prominent productivity and yield of 14.2 g·L −1·day −1 and 94.6 g/g (glucose and soybean oil). Structural analysis indicated that the produced MELs were mainly MEL-A and its fatty acid profile was composed of only medium-chain fatty acids (C8–C12), especially C10 acids (77.81%). Further applications of this compound were evaluated as one-step self-assembly nanomicelles. The obtained MEL nanomicelles showed good physicochemical stability and antibacterial activity. In addition, using clarithromycin as a model hydrophobic drug, the MEL nanomicelles exhibited high loading capacity and could be used for the controlled and sustained drug release in low-pH environments. Therefore, M. aphidis XM01 is an excellent candidate for efficient MEL production, and the prepared MEL nanomicelles have broad application prospects in the pharmaceutical and cosmetic fields.

          Supplementary Information

          The online version contains supplementary material available at 10.1007/s42995-022-00135-0.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

          We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome.

            Metabolic syndrome is a cluster of metabolic disorders, such as abdominal obesity, dyslipidemia, hypertension and impaired fasting glucose, that contribute to increased cardiovascular morbidity and mortality. Although the pathogenesis of metabolic syndrome is complicated and the precise mechanisms have not been elucidated, dietary lipids have been recognized as contributory factors in the development and the prevention of cardiovascular risk clustering. This review explores the physiological functions and molecular actions of medium-chain fatty acids (MCFAs) and medium-chain triglycerides (MCTs) in the development of metabolic syndrome. Experimental studies demonstrate that dietary MCFAs/MCTs suppress fat deposition through enhanced thermogenesis and fat oxidation in animal and human subjects. Additionally, several reports suggest that MCFAs/MCTs offer the therapeutic advantage of preserving insulin sensitivity in animal models and patients with type 2 diabetes. 2009 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against Helicobacter pylori infection.

              Inspired by the natural pathogen-host interactions and adhesion, this study reports on the development of a novel targeted nanotherapeutics for the treatment of Helicobacter pylori (H. pylori) infection. Specifically, plasma membranes of gastric epithelial cells (e.g. AGS cells) are collected and coated onto antibiotic-loaded polymeric cores, the resulting biomimetic nanoparticles (denoted AGS-NPs) bear the same surface antigens as the source AGS cells and thus have inherent adhesion to H. pylori bacteria. When incubated with H. pylori bacteria in vitro, the AGS-NPs preferentially accumulate on the bacterial surfaces. Using clarithromycin (CLR) as a model antibiotic and a mouse model of H. pylori infection, the CLR-loaded AGS-NPs demonstrate superior therapeutic efficacy as compared the free drug counterpart as well as non-targeted nanoparticle control group. Overall, this work illustrates the promise and strength of using natural host cell membranes to functionalize drug nanocarriers for targeted drug delivery to pathogens that colonize on the host cells. As host-pathogen adhesion represents a common biological event for various types of pathogenic bacteria, the bioinspired nanotherapeutic strategy reported here represents a versatile delivery platform that may be applied to treat numerous infectious diseases.
                Bookmark

                Author and article information

                Contributors
                liugl@ouc.edu.cn
                Journal
                Mar Life Sci Technol
                Mar Life Sci Technol
                Marine Life Science & Technology
                Springer Nature Singapore (Singapore )
                2096-6490
                2662-1746
                27 June 2022
                27 June 2022
                August 2022
                : 4
                : 3
                : 373-383
                Affiliations
                [1 ]GRID grid.4422.0, ISNI 0000 0001 2152 3263, College of Marine Life Sciences, , Ocean University of China, ; Qingdao, 266003 China
                [2 ]GRID grid.484590.4, ISNI 0000 0004 5998 3072, Laboratory for Marine Biology and Biotechnology, , Pilot National Laboratory for Marine Science and Technology (Qingdao), ; Qingdao, 266237 China
                Author notes

                Edited by Chengchao Chen.

                Article
                135
                10.1007/s42995-022-00135-0
                10077156
                37073164
                8745b9b4-32d2-4198-89fd-f0c7a1aa203c
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 December 2021
                : 11 May 2022
                Categories
                Research Paper
                Custom metadata
                © Ocean University of China 2022

                mannosylerythritol lipids,two-stage fed-batch fermentation,self-assembly nanomicelles,antimicrobial activity,drug encapsulation and release

                Comments

                Comment on this article