3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Progress in Emerging Two-Dimensional Transition Metal Carbides

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • The phase diagram of transition metal carbides (TMCs) is discussed.

          • The physical and chemical property of TMCs is systematically summarized.

          • The potential application and controllable synthesis of TMCs is discussed.

          • A summary is provided to afford the principle to further investigation.

          Abstract

          As a new member in two-dimensional materials family, transition metal carbides (TMCs) have many excellent properties, such as chemical stability, in-plane anisotropy, high conductivity and flexibility, and remarkable energy conversation efficiency, which predispose them for promising applications as transparent electrode, flexible electronics, broadband photodetectors and battery electrodes. However, up to now, their device applications are in the early stage, especially because their controllable synthesis is still a great challenge. This review systematically summarized the state-of-the-art research in this rapidly developing field with particular focus on structure, property, synthesis and applicability of TMCs. Finally, the current challenges and future perspectives are outlined for the application of 2D TMCs.

          Related collections

          Most cited references219

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance.

              Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
                Bookmark

                Author and article information

                Contributors
                zegao@scu.edu.cn
                dong@inano.au.dk
                Journal
                Nanomicro Lett
                Nanomicro Lett
                Nano-Micro Letters
                Springer Singapore (Singapore )
                2311-6706
                2150-5551
                20 August 2021
                20 August 2021
                December 2021
                : 13
                : 183
                Affiliations
                [1 ]GRID grid.13291.38, ISNI 0000 0001 0807 1581, College of Materials Science and Engineering, , Sichuan University, ; Chengdu, 610065 People’s Republic of China
                [2 ]GRID grid.7048.b, ISNI 0000 0001 1956 2722, Interdisciplinary Nanoscience Center, , Aarhus University, ; 8000 Aarhus, Denmark
                [3 ]GRID grid.10979.36, ISNI 0000 0001 1245 3953, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, , Palacký University, ; 77146 Olomouc, Czech Republic
                Article
                710
                10.1007/s40820-021-00710-7
                8379312
                34417663
                871982e6-afb6-4bd5-b514-d8e99461e9e2
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 April 2021
                : 25 July 2021
                Categories
                Review
                Custom metadata
                © The Author(s) 2021

                two-dimensional transition metal carbides,phase diagram,superconductivity,energy conversation and storage,large-scale synthesis

                Comments

                Comment on this article