20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuroprotection and immunomodulation by xenografted human mesenchymal stem cells following spinal cord ventral root avulsion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study investigates the effects of xenotransplantation of Adipose Tissue Mesenchymal Stem Cells (AT-MSCs) in animals after ventral root avulsion. AT-MSC has similar characteristics to bone marrow mesenchymal stem cells (BM-MSCs), such as immunomodulatory properties and expression of neurotrophic factors. In this study, Lewis rats were submitted to surgery for unilateral avulsion of the lumbar ventral roots and received 5 × 10 5 AT-MSCs via the lateral funiculus. Two weeks after cell administration, the animals were sacrificed and the moto neurons, T lymphocytes and cell defense nervous system were analyzed. An increased neuronal survival and partial preservation of synaptophysin-positive nerve terminals, related to GDNF and BDNF expression of AT-MSCs, and reduction of pro-inflammatory reaction were observed. In conclusion, AT-MSCs prevent second phase neuronal injury, since they suppressed lymphocyte, astroglia and microglia effects, which finally contributed to rat motor-neuron survival and synaptic stability of the lesioned motor-neuron. Moreover, the survival of the injected AT- MSCs lasted for at least 14 days. These results indicate that neuronal survival after lesion, followed by mesenchymal stem cell (MSC) administration, might occur through cytokine release and immunomodulation, thus suggesting that AT-MSCs are promising cells for the therapy of neuronal lesions.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients.

          Mesenchymal stem cells (MSCs) are found in a variety of tissues, including human bone marrow; secrete hematopoietic cytokines; support hematopoietic progenitors in vitro; and possess potent immunosuppressive properties. We hypothesized that cotransplantation of culture-expanded MSCs and hematopoietic stem cells (HSCs) from HLA-identical sibling donors after myeloablative therapy could facilitate engraftment and lessen graft-versus-host disease (GVHD); however, the safety and feasibility of this approach needed to be established. In an open-label, multicenter trial, we coadministered culture-expanded MSCs with HLA-identical sibling-matched HSCs in hematologic malignancy patients. Patients received either bone marrow or peripheral blood stem cells as the HSC source. Patients received 1 of 4 study-specified transplant conditioning regimens and methotrexate (days 1, 3, and 6) and cyclosporine as GVHD prophylaxis. On day 0, patients were given culture-expanded MSCs intravenously (1.0-5.0 x 10(6)/kg) 4 hours before infusion of either bone marrow or peripheral blood stem cells. Forty-six patients (median age, 44.5 years; range, 19-61 years) received MSCs and HLA-matched sibling allografts. MSC infusions were well tolerated, without any infusion-related adverse events. The median times to neutrophil (absolute neutrophil count > or = 0.500 x 10(9)/L) and platelet (platelet count > or = 20 x 10(9)/L) engraftment were 14.0 days (range, 11.0-26.0 days) and 20 days (range, 15.0-36.0 days), respectively. Grade II to IV acute GVHD was observed in 13 (28%) of 46 patients. Chronic GVHD was observed in 22 (61%) of 36 patients who survived at least 90 days; it was extensive in 8 patients. Eleven patients (24%) experienced relapse at a median time to progression of 213.5 days (range, 14-688 days). The probability of patients attaining disease- or progression-free survival at 2 years after MSC infusion was 53%. Cotransplantation of HLA-identical sibling culture-expanded MSCs with an HLA-identical sibling HSC transplant is feasible and seems to be safe, without immediate infusional or late MSC-associated toxicities. The optimal MSC dose and frequency of administration to prevent or treat GVHD during allogeneic HSC transplantation should be evaluated further in phase II clinical trials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The potential of adipose stem cells in regenerative medicine.

            Adipose stem cells (ASCs) are an attractive and abundant stem cell source with therapeutic applicability in diverse fields for the repair and regeneration of acute and chronically damaged tissues. Importantly, unlike the human bone marrow stromal/stem stem cells (BMSCs) that are present at low frequency in the bone marrow, ASCs can be retrieved in high number from either liposuction aspirates or subcutaneous adipose tissue fragments and can easily be expanded in vitro. ASCs display properties similar to that observed in BMSCs and, upon induction, undergo at least osteogenic, chondrogenic, adipogenic and neurogenic, differentiation in vitro. Furthermore, ASCs have been shown to be immunoprivileged, prevent severe graft-versus-host disease in vitro and in vivo and to be genetically stable in long-term culture. They have also proven applicability in other functions, such as providing hematopoietic support and gene transfer. Due to these characteristics, ASCs have rapidly advanced into clinical trials for treatment of a broad range of conditions. As cell therapies are becoming more frequent, clinical laboratories following good manufacturing practices are needed. At the same time as laboratory processes become more extensive, the need for control in the processing laboratory grows consequently involving a greater risk of complications and possibly adverse events for the recipient. Therefore, the safety, reproducibility and quality of the stem cells must thoroughly be examined prior to extensive use in clinical applications. In this review, some of the aspects of examination on ASCs in vitro and the utilization of ASCs in clinical studies are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats.

              Hypoxic preconditioning of stem cells and neural progenitor cells has been tested for promoting cell survival after transplantation. The present investigation examined the hypothesis that hypoxic preconditioning of bone marrow mesenchymal stem cells (BMSCs) could not only enhance their survival but also reinforce regenerative properties of these cells. BMSCs from eGFP engineered rats or pre-labeled with BrdU were pre-treated with normoxia (20% O(2), N-BMSCs) or sub-lethal hypoxia (0.5% O(2). H-BMSCs). The hypoxia exposure up-regulated HIF-1α and trophic/growth factors in BMSCs, including brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF) and its receptor FIK-1, erythropoietin (EPO) and its receptor EPOR, stromal derived factor-1 (SDF-1) and its CXC chemokine receptor 4 (CXCR4). Meanwhile, many pro-inflammatory cytokines/chemokines were down-regulated in H-BMSCs. N-BMSCs or H-BMSCs were intravenously injected into adult rats 24h after 90-min middle cerebral artery occlusion. Comparing to N-BMSCs, transplantation of H-BMSCs showed greater effect of suppressing microglia activity in the brain. Significantly more NeuN-positive and Glut1-positive cells were seen in the ischemic core and peri-infarct regions of the animals received H-BMSC transplantation than that received N-BMSCs. Some NeuN-positive and Glut-1-positive cells showed eGFP or BrdU immunoflourescent reactivity, suggesting differentiation from exogenous BMSCs into neuronal and vascular endothelial cells. In Rotarod test performed 15days after stroke, animals received H-BMSCs showed better locomotion recovery compared with stroke control and N-BMSC groups. We suggest that hypoxic preconditioning of transplanted cells is an effective means of promoting their regenerative capability and therapeutic potential for the treatment of ischemic stroke. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 November 2015
                2015
                : 5
                : 16167
                Affiliations
                [1 ]Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue , Campinas, São Paulo, Brazil
                [2 ]Neuroimmunomodulation Group, Dept. Genetics, Evolution and Bioagents, University of Campinas , Campinas, Brazil
                [3 ]Dept. of Structural and Functional Biology, Institute of Biology, University of Campinas , Campinas, Brazil
                Author notes
                Article
                srep16167
                10.1038/srep16167
                4637826
                26548646
                86dc5594-b4c7-4bfa-8e3a-f0e3d62aa99c
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 07 November 2014
                : 07 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article