Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Heteromeric Kv1 potassium channel expression: amino acid determinants involved in processing and trafficking to the cell surface.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kv1.4 and Kv1.1 potassium channels are expressed in brain as mature glycoproteins that are trans-Golgi glycosylated. When expressed in cell lines these homomers had very different trans-Golgi glycosylation efficiencies and cell surface expression levels with Kv1.4 > Kv1.1 for both parameters (Zhu, J., Watanabe, I., Gomez, B., and Thornhill, W. B. (2001) J. Biol. Chem. 276, 39419-39427). This previous study identified determinants in the outer pore region of Kv1.4 and Kv1.1 that positively and negatively, respectively, affected these events when expressed as homomers. Here we investigated which subunit exhibited positive or negative effects on these processes when expressed as heteromers. Kv1.4/Kv1.1 heteromers, by coexpression or expression as tandem-linked heteromers, were expressed on the cell surface at approximately 20-fold lower levels versus Kv1.4 homomers but they were trans-Golgi glycosylated. The lower Kv1.4/Kv1.1 expression level was not rescued by Kvbeta 2.1 subunits. Thus Kv1.1 inhibited high cell surface expression and partially retained the heteromer in the endoplasmic reticulum, whereas Kv1.4 stimulated trans-Golgi glycosylation. The subunit determinants and cellular events responsible for these differences were investigated. In a Kv1.4/Kv1.1 heteromer, the Kv1.1 pore was a major negative determinant, and it inhibited high cell surface expression because it induced high partial endoplasmic reticulum retention and it decreased protein stability. Other Kv1.1 regions also inhibited high surface expression of heteromers. The Kv1.1 C terminus induced partial Golgi retention and contributed to a decreased protein stability, whereas the Kv1.1 N terminus contributed to only a decreased protein stability. Thus a neuron may regulate its cell surface K+ channel protein levels by different Kv1 subfamily homomeric and heteromeric combinations that affect intracellular retention characteristics and protein stability.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Jul 11 2003
          : 278
          : 28
          Affiliations
          [1 ] Department of Biological Sciences, Fordham University, Bronx, New York 10458, USA.
          Article
          S0021-9258(19)75070-4
          10.1074/jbc.M207984200
          12730233
          86d83cbd-0fed-41e6-929f-5398e927a16d
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content354

          Cited by6