49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

      ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.

          Related collections

          Most cited references344

          • Record: found
          • Abstract: found
          • Article: not found

          RNA degradation by the exosome is promoted by a nuclear polyadenylation complex.

          The exosome complex of 3'-5' exonucleases participates in RNA maturation and quality control and can rapidly degrade RNA-protein complexes in vivo. However, the purified exosome showed weak in vitro activity, indicating that rapid RNA degradation requires activating cofactors. This work identifies a nuclear polyadenylation complex containing a known exosome cofactor, the RNA helicase Mtr4p; a poly(A) polymerase, Trf4p; and a zinc knuckle protein, Air2p. In vitro, the Trf4p/Air2p/Mtr4p polyadenylation complex (TRAMP) showed distributive RNA polyadenylation activity. The presence of the exosome suppressed poly(A) tail addition, while TRAMP stimulated exosome degradation through structured RNA substrates. In vivo analyses showed that TRAMP is required for polyadenylation and degradation of rRNA and snoRNA precursors that are characterized exosome substrates. Poly(A) tails stimulate RNA degradation in bacteria, suggesting that this is their ancestral function. We speculate that this function was maintained in eukaryotic nuclei, while cytoplasmic mRNA poly(A) tails acquired different roles in translation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity.

            J Hopfield (1974)
            The specificity with which the genetic code is read in protein synthesis, and with which other highly specific biosynthetic reactions take place, can be increased above the level available from free energy differences in intermediates or kinetic barriers by a process defined here as kinetic proofreading. A simple kinetic pathway is described which results in this proofreading when the reaction is strongly but nonspecifically driven, e.g., by phosphate hydrolysis. Protein synthesis, amino acid recognition, and DNA replication, all exhibit the features of this model. In each case, known reactions which otherwise appear to be useless or deleterious complications are seen to be essential to the proofreading function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs.

              Eukaryotic cells contain many fibrillarin-associated small nucleolar RNAs (snoRNAs) that possess long complementarities to mature rRNAs. Characterization of 21 novel antisense snoRNAs from human cells followed by genetic depletion and reconstitution studies on yeast U24 snoRNA provides evidence that this class of snoRNAs is required for site-specific 2'-O-methylation of preribosomal RNA (pre-rRNA). Antisense sno-RNAs function through direct base-pairing interactions with pre-rRNA. The antisense element, together with the D or D' box of the snoRNA, provide the information necessary to select the target nucleotide for the methyltransfer reaction. The conclusion that sno-RNAs function in covalent modification of the sugar moieties of ribonucleotides demonstrates that eukaryotic small nuclear RNAs have a more versatile cellular function than earlier anticipated.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                November 04 2013
                November 2013
                November 2013
                November 04 2013
                : 195
                : 3
                : 643-681
                Article
                10.1534/genetics.113.153197
                3813855
                24190922
                86b137be-900e-4258-9138-b9a306ae61b6
                © 2013
                History

                Comments

                Comment on this article