73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of the Contrasting Pathogenicities Induced by the D222G Mutation in 1918 and 2009 Pandemic Influenza A Viruses

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In 2009, the D222G mutation in the hemagglutinin (HA) glycoprotein of pandemic H1N1 influenza A virus was found to correlate with fatal and severe human infections. Previous static structural analysis suggested that, unlike the H1N1 viruses prevalent in 1918, the mutation did not compromise binding to human α2,6-linked glycan receptors, allowing it to transmit efficiently. Here we investigate the interconversion mechanism between two predicted binding modes in both 2009 and 1918 HAs, introducing a highly parallel intermediate network search scheme to construct kinetically relevant pathways efficiently. Accumulated mutations at positions 183 and 224 that alter the size of the binding pocket are identified with the fitness of the 2009 pandemic virus carrying the D222G mutation. This result suggests that the pandemic H1N1 viruses could gain binding affinity to the α2,3-linked glycan receptors in the lungs, usually associated with highly pathogenic avian influenza, without compromising viability.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rapid planetesimal formation in turbulent circumstellar discs

          The initial stages of planet formation in circumstellar gas discs proceed via dust grains that collide and build up larger and larger bodies (Safronov 1969). How this process continues from metre-sized boulders to kilometre-scale planetesimals is a major unsolved problem (Dominik et al. 2007): boulders stick together poorly (Benz 2000), and spiral into the protostar in a few hundred orbits due to a head wind from the slower rotating gas (Weidenschilling 1977). Gravitational collapse of the solid component has been suggested to overcome this barrier (Safronov 1969, Goldreich & Ward 1973, Youdin & Shu 2002). Even low levels of turbulence, however, inhibit sedimentation of solids to a sufficiently dense midplane layer (Weidenschilling & Cuzzi 1993, Dominik et al. 2007), but turbulence must be present to explain observed gas accretion in protostellar discs (Hartmann 1998). Here we report the discovery of efficient gravitational collapse of boulders in locally overdense regions in the midplane. The boulders concentrate initially in transient high pressures in the turbulent gas (Johansen, Klahr, & Henning 2006), and these concentrations are augmented a further order of magnitude by a streaming instability (Youdin & Goodman 2005, Johansen, Henning, & Klahr 2006, Johansen & Youdin 2007) driven by the relative flow of gas and solids. We find that gravitationally bound clusters form with masses comparable to dwarf planets and containing a distribution of boulder sizes. Gravitational collapse happens much faster than radial drift, offering a possible path to planetesimal formation in accreting circumstellar discs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Long Term Outcomes Following Hospital Admission for Sepsis Using Relative Survival Analysis: A Prospective Cohort Study of 1,092 Patients with 5 Year Follow Up

            Background Sepsis is a leading cause of death in intensive care units and is increasing in incidence. Current trials of novel therapeutic approaches for sepsis focus on 28-day mortality as the primary outcome measure, but excess mortality may extend well beyond this time period. Methods We used relative survival analysis to examine excess mortality in a cohort of 1,028 patients admitted to a tertiary referral hospital with sepsis during 2007–2008, over the first 5 years of follow up. Expected survival was estimated using the Ederer II method, using Australian life tables as the reference population. Cumulative and interval specific relative survival were estimated by age group, sex, sepsis severity and Indigenous status. Results Patients were followed for a median of 4.5 years (range 0–5.2). Of the 1028 patients, the mean age was 46.9 years, 52% were male, 228 (22.2%) had severe sepsis and 218 (21%) died during the follow up period. Mortality based on cumulative relative survival exceeded that of the reference population for the first 2 years post admission in the whole cohort and for the first 3 years in the subgroup with severe sepsis. Independent predictors of mortality over the whole follow up period were male sex, Indigenous Australian ethnicity, older age, higher Charlson Comorbidity Index, and sepsis-related organ dysfunction at presentation. Conclusions The mortality rate of patients hospitalised with sepsis exceeds that of the general population until 2 years post admission. Efforts to improve outcomes from sepsis should examine longer term outcomes than the traditional primary endpoints of 28-day and 90-day mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Preparation of Artificial Plasma Membrane Mimicking Vesicles with Lipid Asymmetry

              Lipid asymmetry, the difference in lipid distribution across the lipid bilayer, is one of the most important features of eukaryotic cellular membranes. However, commonly used model membrane vesicles cannot provide control of lipid distribution between inner and outer leaflets. We recently developed methods to prepare asymmetric model membrane vesicles, but facile incorporation of a highly controlled level of cholesterol was not possible. In this study, using hydroxypropyl-α-cyclodextrin based lipid exchange, a simple method was devised to prepare large unilamellar model membrane vesicles that closely resemble mammalian plasma membranes in terms of their lipid composition and asymmetry (sphingomyelin (SM) and/or phosphatidylcholine (PC) outside/phosphatidylethanolamine (PE) and phosphatidylserine (PS) inside), and in which cholesterol content can be readily varied between 0 and 50 mol%. We call these model membranes “artificial plasma membrane mimicking” (“PMm”) vesicles. Asymmetry was confirmed by both chemical labeling and measurement of the amount of externally-exposed anionic lipid. These vesicles should be superior and more realistic model membranes for studies of lipid-lipid and lipid-protein interaction in a lipid environment that resembles that of mammalian plasma membranes.
                Bookmark

                Author and article information

                Journal
                J Chem Theory Comput
                J Chem Theory Comput
                ct
                jctcce
                Journal of Chemical Theory and Computation
                American Chemical Society
                1549-9618
                1549-9626
                24 March 2015
                12 May 2015
                : 11
                : 5
                : 2307-2314
                Affiliations
                [1]University Chemical Laboratories , Lensfield Road, Cambridge CB2 1EW, U.K.
                Author notes
                [* ]E-mail: cs778@ 123456cam.ac.uk (C.S.).
                [* ]E-mail: csw34@ 123456cam.ac.uk (C.S.W.).
                [* ]E-mail: khs26@ 123456cam.ac.uk (K.H.S.-C.).
                [* ]E-mail: dw34@ 123456cam.ac.uk (D.J.W.).
                Article
                10.1021/ct5010565
                4547735
                86aad02f-727e-4c27-ac44-5febfa55cce2
                Copyright © 2015 American Chemical Society

                This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

                History
                : 25 November 2014
                Categories
                Article
                Custom metadata
                ct5010565
                ct-2014-010565

                Computational chemistry & Modeling
                Computational chemistry & Modeling

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content498

                Cited by1

                Most referenced authors2,560