25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current concept in neural regeneration research: NSCs isolation, characterization and transplantation in various neurodegenerative diseases and stroke: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since last few years, an impressive amount of data has been generated regarding the basic in vitro and in vivo biology of neural stem cells (NSCs) and there is much far hope for the success in cell replacement therapies for several human neurodegenerative diseases and stroke. The discovery of adult neurogenesis (the endogenous production of new neurons) in the mammalian brain more than 40 years ago has resulted in a wealth of knowledge about stem cells biology in neuroscience research. Various studies have done in search of a suitable source for NSCs which could be used in animal models to understand the basic and transplantation biology before treating to human. The difficulties in isolating pure population of NSCs limit the study of neural stem behavior and factors that regulate them. Several studies on human fetal brain and spinal cord derived NSCs in animal models have shown some interesting results for cell replacement therapies in many neurodegenerative diseases and stroke models. Also the methods and conditions used for in vitro culture of these cells provide an important base for their applicability and specificity in a definite target of the disease. Various important developments and modifications have been made in stem cells research which is needed to be more specified and enrolment in clinical studies using advanced approaches. This review explains about the current perspectives and suitable sources for NSCs isolation, characterization, in vitro proliferation and their use in cell replacement therapies for the treatment of various neurodegenerative diseases and strokes.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and functional implications of adult neurogenesis.

          The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study.

            Prevention and control of disease and injury require information about the leading medical causes of illness and exposures or risk factors. The assessment of the public-health importance of these has been hampered by the lack of common methods to investigate the overall, worldwide burden. The Global Burden of Disease Study (GBD) provides a standardised approach to epidemiological assessment and uses a standard unit, the disability-adjusted life year (DALY), to aid comparisons. DALYs for each age-sex group in each GBD region for 107 disorders were calculated, based on the estimates of mortality by cause, incidence, average age of onset, duration, and disability severity. Estimates of the burden and prevalence of exposure in different regions of disorders attributable to malnutrition, poor water supply, sanitation and personal and domestic hygiene, unsafe sex, tobacco use, alcohol, occupation, hypertension, physical inactivity, use of illicit drugs, and air pollution were developed. Developed regions account for 11.6% of the worldwide burden from all causes of death and disability, and account for 90.2% of health expenditure worldwide. Communicable, maternal, perinatal, and nutritional disorders explain 43.9%; non-communicable causes 40.9%; injuries 15.1%; malignant neoplasms 5.1%; neuropsychiatric conditions 10.5%; and cardiovascular conditions 9.7% of DALYs worldwide. The ten leading specific causes of global DALYs are, in descending order, lower respiratory infections, diarrhoeal diseases, perinatal disorders, unipolar major depression, ischaemic heart disease, cerebrovascular disease, tuberculosis, measles, road-traffic accidents, and congenital anomalies. 15.9% of DALYs worldwide are attributable to childhood malnutrition and 6.8% to poor water, and sanitation and personal and domestic hygiene. The three leading contributors to the burden of disease are communicable and perinatal disorders affecting children. The substantial burdens of neuropsychiatric disorders and injuries are under-recognised. The epidemiological transition in terms of DALYs has progressed substantially in China, Latin America and the Caribbean, other Asia and islands, and the middle eastern crescent. If the burdens of disability and death are taken into account, our list differs substantially from other lists of the leading causes of death. DALYs provide a common metric to aid meaningful comparison of the burden of risk factors, diseases, and injuries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathobiology of ischaemic stroke: an integrated view.

              Brain injury following transient or permanent focal cerebral ischaemia (stroke) develops from a complex series of pathophysiological events that evolve in time and space. In this article, the relevance of excitotoxicity, peri-infarct depolarizations, inflammation and apoptosis to delayed mechanisms of damage within the peri-infarct zone or ischaemic penumbra are discussed. While focusing on potentially new avenues of treatment, the issue of why many clinical stroke trials have so far proved disappointing is addressed. This article provides a framework that can be used to generate testable hypotheses and treatment strategies that are linked to the appearance of specific pathophysiological events within the ischaemic brain.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Advanc Res
                J Advanc Res
                Journal of Advanced Research
                Elsevier
                2090-1232
                2090-1224
                07 May 2013
                May 2014
                07 May 2013
                : 5
                : 3
                : 277-294
                Affiliations
                [a ]Centre for Liver Research and Diagnostics, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, 500 058 Andhra Pradesh, India
                [b ]Paspala Advanced Neural (PAN) Research Foundation, Narayanguda, Hyderabad, 500 029 Andhra Pradesh, India
                Author notes
                [* ]Corresponding author. Tel./fax: +91 40 24342954. aleem_a_khan@ 123456rediffmail.com
                Article
                S2090-1232(13)00063-5
                10.1016/j.jare.2013.04.005
                4294738
                25685495
                86a6c5bc-9fe7-4c89-8769-967708cd8e03
                © 2013 Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

                History
                : 21 December 2012
                : 10 April 2013
                : 28 April 2013
                Categories
                Review

                neural stem cells,characterization,neurodegenerative diseases,stroke,regeneration

                Comments

                Comment on this article