0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathfinding in stochastic environments: learning vs planning

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Among the main challenges associated with navigating a mobile robot in complex environments are partial observability and stochasticity. This work proposes a stochastic formulation of the pathfinding problem, assuming that obstacles of arbitrary shapes may appear and disappear at random moments of time. Moreover, we consider the case when the environment is only partially observable for an agent. We study and evaluate two orthogonal approaches to tackle the problem of reaching the goal under such conditions: planning and learning. Within planning, an agent constantly re-plans and updates the path based on the history of the observations using a search-based planner. Within learning, an agent asynchronously learns to optimize a policy function using recurrent neural networks (we propose an original efficient, scalable approach). We carry on an extensive empirical evaluation of both approaches that show that the learning-based approach scales better to the increasing number of the unpredictably appearing/disappearing obstacles. At the same time, the planning-based one is preferable when the environment is close-to-the-deterministic ( i.e., external disturbances are rare). Code available at https://github.com/Tviskaron/pathfinding-in-stochastic-envs.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Human-level control through deep reinforcement learning.

          The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A Formal Basis for the Heuristic Determination of Minimum Cost Paths

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Simultaneous Localization and Mapping: A Survey of Current Trends in Autonomous Driving

                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ Comput Sci
                PeerJ Comput Sci
                peerj-cs
                PeerJ Computer Science
                PeerJ Inc. (San Diego, USA )
                2376-5992
                18 August 2022
                2022
                : 8
                : e1056
                Affiliations
                [1 ]Cognitive Dynamic Systems, Moscow Institute of Physics and Technology , Moscow, Russia
                [2 ]Artificial Intelligence Research Institute AIRI , Moscow, Russia
                [3 ]Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences , Moscow, Russia
                Article
                cs-1056
                10.7717/peerj-cs.1056
                9455045
                36091975
                86975556-39b9-450c-93ec-43de3cfcaf5d
                ©2022 Skrynnik et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited.

                History
                : 5 May 2022
                : 14 July 2022
                Funding
                Funded by: The Ministry of Science and Higher Education of the Russian Federation under Project 075-15-2020-799
                This work was supported by the Ministry of Science and Higher Education of the Russian Federation under Project 075-15-2020-799. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Artificial Intelligence
                Autonomous Systems
                Robotics

                reinforcement learning,path finding,policy optimization,stochastic a*,asynchronous learning

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content412

                Most referenced authors405