19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perovskite light-emitting diodes (LEDs) are attracting great attention due to their efficient and narrow emission. Quasi-two-dimensional perovskites with Ruddlesden–Popper-type layered structures can enlarge exciton binding energy and confine charge carriers and are considered good candidate materials for efficient LEDs. However, these materials usually contain a mixture of phases and the phase impurity could cause low emission efficiency. In addition, converting three-dimensional into quasi-two-dimensional perovskite introduces more defects on the surface or at the grain boundaries due to the reduction of crystal sizes. Both factors limit the emission efficiency of LEDs. Here, firstly, through composition and phase engineering, optimal quasi-two-dimensional perovskites are selected. Secondly, surface passivation is carried out by coating organic small molecule trioctylphosphine oxide on the perovskite thin film surface. Accordingly, green LEDs based on quasi-two-dimensional perovskite reach a current efficiency of 62.4 cd A −1 and external quantum efficiency of 14.36%.

          Abstract

          Solution-processable halide perovskites have high luminous efficiency and excellent chemical tunability, making them ideal candidates for light-emitting diodes. Here Yang et al. achieve high external quantum efficiency of 14% in the devices by fine-tuning the phase and passivating the surface defects.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Solar cells. Impact of microstructure on local carrier lifetime in perovskite solar cells.

          The remarkable performance of hybrid perovskite photovoltaics is attributed to their long carrier lifetimes and high photoluminescence (PL) efficiencies. High-quality films are associated with slower PL decays, and it has been claimed that grain boundaries have a negligible impact on performance. We used confocal fluorescence microscopy correlated with scanning electron microscopy to spatially resolve the PL decay dynamics from films of nonstoichiometric organic-inorganic perovskites, CH3NH3PbI3(Cl). The PL intensities and lifetimes varied between different grains in the same film, even for films that exhibited long bulk lifetimes. The grain boundaries were dimmer and exhibited faster nonradiative decay. Energy-dispersive x-ray spectroscopy showed a positive correlation between chlorine concentration and regions of brighter PL, whereas PL imaging revealed that chemical treatment with pyridine could activate previously dark grains. Copyright © 2015, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites.

              Organic-inorganic metal halide perovskites have recently emerged as a top contender to be used as an absorber material in highly efficient, low-cost photovoltaic devices. Solution-processed semiconductors tend to have a high density of defect states and exhibit a large degree of electronic disorder. Perovskites appear to go against this trend, and despite relatively little knowledge of the impact of electronic defects, certified solar-to-electrical power conversion efficiencies of up to 17.9% have been achieved. Here, through treatment of the crystal surfaces with the Lewis bases thiophene and pyridine, we demonstrate significantly reduced nonradiative electron-hole recombination within the CH(3)NH(3)PbI(3-x)Cl(x) perovskite, achieving photoluminescence lifetimes which are enhanced by nearly an order of magnitude, up to 2 μs. We propose that this is due to the electronic passivation of under-coordinated Pb atoms within the crystal. Through this method of Lewis base passivation, we achieve power conversion efficiencies for solution-processed planar heterojunction solar cells enhanced from 13% for the untreated solar cells to 15.3% and 16.5% for the thiophene and pyridine-treated solar cells, respectively.
                Bookmark

                Author and article information

                Contributors
                jyou@semi.ac.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                8 February 2018
                8 February 2018
                2018
                : 9
                : 570
                Affiliations
                [1 ]ISNI 0000 0004 0632 513X, GRID grid.454865.e, Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, ; Beijing, 100083 China
                [2 ]ISNI 0000 0000 9040 3743, GRID grid.28703.3e, College of Applied Sciences, , Beijing University of Technology, ; Beijing, 100124 China
                [3 ]ISNI 0000 0004 1797 8419, GRID grid.410726.6, College of Materials Science and Opto-electronic Technology, , University of Chinese Academy of Sciences, ; Beijing, 100049 China
                Author information
                http://orcid.org/0000-0002-4651-9081
                Article
                2978
                10.1038/s41467-018-02978-7
                5805756
                29422600
                866ae4c3-6fde-423c-b697-b4c3592cbeb7
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 13 September 2017
                : 11 January 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article