3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Noncoding RNAs as a novel approach to target retinopathy of prematurity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinopathy of prematurity (ROP), a vascular disease characterized by abnormal vessel development in the retina, has become a primary cause of blindness in children around the world. ROP can be developed during two different phases: vessel loss and vessel proliferation. Once preterm infants with immature retinal vessel growth are exposed to high level of oxygen inside the incubator, vessel loss can occur. When infants are exposed to room air, they may experience the proliferation of vessels in the retina. Although multiple factors are reported to be involved in the pathogenesis of ROP, including vaso-endothelial growth factors (VEGFs) and hypoxia-inducible factors, the pathogenesis of ROP is not completely understood. Although laser therapy and pharmacologic agents, such as anti-VEGF agents, have been commonly used to treat ROP, the incidence of ROP is rapidly rising. Given that current therapies can be invasive and long-term effects are not fully known, the search for novel therapeutic targets with less destructive properties needs to be considered. Within the last decade, the field of noncoding RNA therapy has shown potential as next-generation therapy to treat diverse diseases. In this review, we introduce various noncoding RNAs regulating ROP and discuss their role as potential therapeutic targets in ROP.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Natural RNA circles function as efficient microRNA sponges.

          MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that act by direct base pairing to target sites within untranslated regions of messenger RNAs. Recently, miRNA activity has been shown to be affected by the presence of miRNA sponge transcripts, the so-called competing endogenous RNA in humans and target mimicry in plants. We previously identified a highly expressed circular RNA (circRNA) in human and mouse brain. Here we show that this circRNA acts as a miR-7 sponge; we term this circular transcript ciRS-7 (circular RNA sponge for miR-7). ciRS-7 contains more than 70 selectively conserved miRNA target sites, and it is highly and widely associated with Argonaute (AGO) proteins in a miR-7-dependent manner. Although the circRNA is completely resistant to miRNA-mediated target destabilization, it strongly suppresses miR-7 activity, resulting in increased levels of miR-7 targets. In the mouse brain, we observe overlapping co-expression of ciRS-7 and miR-7, particularly in neocortical and hippocampal neurons, suggesting a high degree of endogenous interaction. We further show that the testis-specific circRNA, sex-determining region Y (Sry), serves as a miR-138 sponge, suggesting that miRNA sponge effects achieved by circRNA formation are a general phenomenon. This study serves as the first, to our knowledge, functional analysis of a naturally expressed circRNA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circular RNAs are abundant, conserved, and associated with ALU repeats.

            Circular RNAs composed of exonic sequence have been described in a small number of genes. Thought to result from splicing errors, circular RNA species possess no known function. To delineate the universe of endogenous circular RNAs, we performed high-throughput sequencing (RNA-seq) of libraries prepared from ribosome-depleted RNA with or without digestion with the RNA exonuclease, RNase R. We identified >25,000 distinct RNA species in human fibroblasts that contained non-colinear exons (a "backsplice") and were reproducibly enriched by exonuclease degradation of linear RNA. These RNAs were validated as circular RNA (ecircRNA), rather than linear RNA, and were more stable than associated linear mRNAs in vivo. In some cases, the abundance of circular molecules exceeded that of associated linear mRNA by >10-fold. By conservative estimate, we identified ecircRNAs from 14.4% of actively transcribed genes in human fibroblasts. Application of this method to murine testis RNA identified 69 ecircRNAs in precisely orthologous locations to human circular RNAs. Of note, paralogous kinases HIPK2 and HIPK3 produce abundant ecircRNA from their second exon in both humans and mice. Though HIPK3 circular RNAs contain an AUG translation start, it and other ecircRNAs were not bound to ribosomes. Circular RNAs could be degraded by siRNAs and, therefore, may act as competing endogenous RNAs. Bioinformatic analysis revealed shared features of circularized exons, including long bordering introns that contained complementary ALU repeats. These data show that ecircRNAs are abundant, stable, conserved and nonrandom products of RNA splicing that could be involved in control of gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression

              The human genome contains many thousands of long noncoding RNAs (lncRNAs). While several studies have demonstrated compelling biological and disease roles for individual examples, analytical and experimental approaches to investigate these genes have been hampered by the lack of comprehensive lncRNA annotation. Here, we present and analyze the most complete human lncRNA annotation to date, produced by the GENCODE consortium within the framework of the ENCODE project and comprising 9277 manually annotated genes producing 14,880 transcripts. Our analyses indicate that lncRNAs are generated through pathways similar to that of protein-coding genes, with similar histone-modification profiles, splicing signals, and exon/intron lengths. In contrast to protein-coding genes, however, lncRNAs display a striking bias toward two-exon transcripts, they are predominantly localized in the chromatin and nucleus, and a fraction appear to be preferentially processed into small RNAs. They are under stronger selective pressure than neutrally evolving sequences—particularly in their promoter regions, which display levels of selection comparable to protein-coding genes. Importantly, about one-third seem to have arisen within the primate lineage. Comprehensive analysis of their expression in multiple human organs and brain regions shows that lncRNAs are generally lower expressed than protein-coding genes, and display more tissue-specific expression patterns, with a large fraction of tissue-specific lncRNAs expressed in the brain. Expression correlation analysis indicates that lncRNAs show particularly striking positive correlation with the expression of antisense coding genes. This GENCODE annotation represents a valuable resource for future studies of lncRNAs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Pharmacol
                Front Pharmacol
                Front. Pharmacol.
                Frontiers in Pharmacology
                Frontiers Media S.A.
                1663-9812
                20 October 2022
                2022
                : 13
                : 1033341
                Affiliations
                [1] 1 Vessel-Organ Interaction Research Center , College of Pharmacy , Kyungpook National University , Daegu, South Korea
                [2] 2 College of Pharmacy and Research Institute of Pharmaceutical Sciences , Kyungpook National University , Daegu, South Korea
                Author notes

                Edited by: Mario Damiano Toro, Federico II University Hospital, Italy

                Reviewed by: Chunzhen Zhao, Weifang Medical University, China

                Weiguo Feng, Weifang Medical University, China

                *Correspondence: Juhee Ryu, juheeryu@ 123456knu.ac.kr

                This article was submitted to Experimental Pharmacology and Drug Discovery, a section of the journal Frontiers in Pharmacology

                Article
                1033341
                10.3389/fphar.2022.1033341
                9641647
                36386230
                866864f8-6a4f-410d-a018-0666bd769398
                Copyright © 2022 Kim, Kim and Ryu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 31 August 2022
                : 11 October 2022
                Funding
                Funded by: National Research Foundation of Korea , doi 10.13039/501100003725;
                Categories
                Pharmacology
                Review

                Pharmacology & Pharmaceutical medicine
                microrna,long noncoding rna,circular rna,retinopathy of prematurity,retinal vascular disease,noncoding rna

                Comments

                Comment on this article