3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Exogenous Selenium Supplementation on the Nutritional Value and Shelf Life of Lettuce

      , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lettuce (Lactuca sativa) is rich in vitamins, minerals, and bioactive components, serving as an important source of selenium (Se) intake for humans. This study investigated the effects of Se treatment on lettuce using different concentrations of sodium selenite (Na2SeO3), focusing on biomass, physiological indicators, nutritional composition, and physiological changes during storage. Through correlation analysis of the transcriptome and Se species, the absorption and conversion mechanisms of Se in lettuce were revealed. The results showed that Se treatment initially increased the chlorophyll content in lettuce, followed by a decrease. Soluble sugar, soluble protein, total phenols, and anthocyanins increased at low Se concentrations but decreased at high concentrations. Flavonoid content decreased only at 1 mg/L Se, while other treatments were higher than the control group. GSH content and superoxide dismutase, catalase, and peroxidase activities initially increased and then decreased, while malondialdehyde (MDA) content first decreased and then increased. Five Se species, including Se (IV), Se (VI), selenocysteine (SeCys2), selenomethionine (SeMet), and methylselenocysteine (MeSeCys), were detected in lettuce leaves after Se treatment, with SeMet being the most abundant. During storage, Se-treated lettuce exhibited lower weight loss, a*, b*, browning index, and color difference (ΔE) values compared to the control group. CAT and POD activities and GSH content also followed a trend of initial increase followed by a decrease. Transcriptome data analysis revealed that genes such as MYB1, RPK1, PTR44, NTRC, WRKY7, and CSLD3 were associated with the stress response of Se-treated lettuce.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation.

          Selenium (Se) is an essential micronutrient for many organisms, including plants, animals and humans. As plants are the main source of dietary Se, plant Se metabolism is therefore important for Se nutrition of humans and other animals. However, the concentration of Se in plant foods varies between areas, and too much Se can lead to toxicity. As we discuss here, plant Se uptake and metabolism can be exploited for the purposes of developing high-Se crop cultivars and for plant-mediated removal of excess Se from soil or water. Here, we review key developments in the current understanding of Se in higher plants. We also discuss recent advances in the genetic engineering of Se metabolism, particularly for biofortification and phytoremediation of Se-contaminated environments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones.

            NRT1/PTR FAMILY (NPF) proteins were originally identified as nitrate or di/tri-peptide transporters. Recent studies revealed that this transporter family also transports the plant hormones auxin (indole-3-acetic acid), abscisic acid (ABA), and gibberellin (GA), as well as secondary metabolites (glucosinolates). We developed modified yeast two-hybrid systems with receptor complexes for GA and jasmonoyl-isoleucine (JA-Ile), to detect GA and JA-Ile transport activities of proteins expressed in the yeast cells. Using these GA and JA-Ile systems as well as the ABA system that we had introduced previously, we determined the capacities of Arabidopsis NPFs to transport these hormones. Several NPFs induced the formation of receptor complexes under relatively low hormone concentrations. Hormone transport activities were confirmed for some NPFs by direct analysis of hormone uptake of yeast cells by liquid chromatography-tandem mass spectrometry. Our results suggest that at least some NPFs could function as hormone transporters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Transporters in plant sulfur metabolism

              Sulfur is an essential nutrient, necessary for synthesis of many metabolites. The uptake of sulfate, primary and secondary assimilation, the biosynthesis, storage, and final utilization of sulfur (S) containing compounds requires a lot of movement between organs, cells, and organelles. Efficient transport systems of S-containing compounds across the internal barriers or the plasma membrane and organellar membranes are therefore required. Here, we review a current state of knowledge of the transport of a range of S-containing metabolites within and between the cells as well as of their long distance transport. An improved understanding of mechanisms and regulation of transport will facilitate successful engineering of the respective pathways, to improve the plant yield, biotic interaction and nutritional properties of crops.
                Bookmark

                Author and article information

                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                July 2024
                June 27 2024
                : 14
                : 7
                : 1380
                Article
                10.3390/agronomy14071380
                86664449-6e4b-4908-9e54-27a4e50e433d
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article