1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Triple-Networked Hybrid Hydrogels Reinforced with Montmorillonite Clay and Graphene Nanoplatelets for Soft and Hard Tissue Regeneration

      , , , , , , , ,
      International Journal of Molecular Sciences
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydrogel is a three-dimensional (3D) soft and highly hydrophilic, polymeric network that can swell in water and imbibe a high amount of water or biological fluids. Hydrogels have been used widely in various biomedical applications. Hydrogel may provide a fluidic tissue-like 3D microenvironment by maintaining the original network for tissue engineering. However, their low mechanical performances limit their broad applicability in various functional tissues. This property causes substantial challenges in designing and preparing strong hydrogel networks. Therefore, we report the triple-networked hybrid hydrogel network with enhanced mechanical properties by incorporating dual-crosslinking and nanofillers (e.g., montmorillonite (MMT), graphene nanoplatelets (GNPs)). In this study, we prepared hybrid hydrogels composed of polyacrylamide, poly (vinyl alcohol), sodium alginate, MMT, and MMT/GNPs through dynamic crosslinking. The freeze-dried hybrid hydrogels showed good 3D porous architecture. The results exhibited a magnificent porous structure, interconnected pore-network surface morphology, enhanced mechanical properties, and cellular activity of hybrid hydrogels.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Alginate: properties and biomedical applications.

          Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How useful is SBF in predicting in vivo bone bioactivity?

            The bone-bonding ability of a material is often evaluated by examining the ability of apatite to form on its surface in a simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma. However, the validity of this method for evaluating bone-bonding ability has not been assessed systematically. Here, the history of SBF, correlation of the ability of apatite to form on various materials in SBF with their in vivo bone bioactivities, and some examples of the development of novel bioactive materials based on apatite formation in SBF are reviewed. It was concluded that examination of apatite formation on a material in SBF is useful for predicting the in vivo bone bioactivity of a material, and the number of animals used in and the duration of animal experiments can be reduced remarkably by using this method.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them

              Hydrogels are hydrophilic, three-dimensional networks that are able to absorb large quantities of water or biological fluids, and thus have the potential to be used as prime candidates for biosensors, drug delivery vectors, and carriers or matrices for cells in tissue engineering. In this critical review article, advantages of the hydrogels that overcome the limitations from other types of biomaterials will be discussed. Hydrogels, depending on their chemical composition, are responsive to various stimuli including heating, pH, light, and chemicals. Two swelling mechanisms will be discussed to give a detailed understanding of how the structure parameters affect swelling properties, followed by the gelation mechanism and mesh size calculation. Hydrogels prepared from natural materials such as polysaccharides and polypeptides, along with different types of synthetic hydrogels from the recent reported literature, will be discussed in detail. Finally, attention will be given to biomedical applications of different kinds of hydrogels including cell culture, self-healing, and drug delivery.
                Bookmark

                Author and article information

                Contributors
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                November 2022
                November 16 2022
                : 23
                : 22
                : 14158
                Article
                10.3390/ijms232214158
                865f26f2-7992-47c1-9e3e-99ccab298ecc
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article