23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Review: The Current In Vivo Models for the Discovery and Utility of New Anti-leishmanial Drugs Targeting Cutaneous Leishmaniasis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The current in vivo models for the utility and discovery of new potential anti-leishmanial drugs targeting Cutaneous Leishmaniasis (CL) differ vastly in their immunological responses to the disease and clinical presentation of symptoms. Animal models that show similarities to the human form of CL after infection with Leishmania should be more representative as to the effect of the parasite within a human. Thus, these models are used to evaluate the efficacy of new anti-leishmanial compounds before human clinical trials. Current animal models aim to investigate (i) host–parasite interactions, (ii) pathogenesis, (iii) biochemical changes/pathways, (iv) in vivo maintenance of parasites, and (v) clinical evaluation of drug candidates. This review focuses on the trends of infection observed between Leishmania parasites, the predictability of different strains, and the determination of parasite load. These factors were used to investigate the overall effectiveness of the current animal models. The main aim was to assess the efficacy and limitations of the various CL models and their potential for drug discovery and evaluation. In conclusion, we found that the following models are the most suitable for the assessment of anti-leishmanial drugs: L. major–C57BL/6 mice (or–vervet monkey, or rhesus monkeys), L. tropica–CsS-16 mice, L. amazonensis–CBA mice, L. braziliensis–golden hamster (or–rhesus monkey). We also provide in-depth guidance for which models are not suitable for these investigations.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Cutaneous and mucocutaneous leishmaniasis.

          Leishmaniasis is a cluster of diseases caused by protozoa in the genus Leishmania. There are three basic clinical forms: cutaneous, mucocutaneous, and visceral leishmaniasis. The present review focuses on the diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Characteristics of both the human host and the parasite species influence the clinical disease manifestations that range from asymptomatic exposure, to self-healing skin ulcers, to life-threatening widespread destructive ulcerations. Whether through medical treatment or through spontaneous resolution, skin ulcerations generally result in disfiguring scars with significant social and economic impact. Tests to confirm the diagnosis should be performed on patients who have recently visited endemic areas and have skin or mucosal manifestations consistent with leishmaniasis. Treatment depends on the species of Leishmania and the risk of widespread or disfiguring disease. Because of increasing trends in global travel, educating health care providers to recognize and treat leishmaniasis in both endemic and non-endemic countries is imperative.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Vector Transmission of Leishmania Abrogates Vaccine-Induced Protective Immunity

            Introduction Leishmania are obligate-intracellular protozoan parasites that establish infection in mammalian hosts following transmission to the skin by the bite of an infected Phlebotomine sand fly [1]. Different Leishmania species are associated with a spectrum of clinical outcomes in humans, including fatal, disseminated infection of the spleen and liver following infection with L. donovani, and self-curing cutaneous lesions associated with L. major and other cutaneous strains. Healed cutaneous lesions often result in a permanent scar that has been shown to harbor low numbers of parasites over the long term [2]. While this chronic, sub-clinical state can serve as a long-term reservoir for disease, it also maintains powerful protective immunity for the host, as individuals with healed primary lesions are highly resistant to re-infection, and complete elimination of a primary infection in animal models results in susceptibility to reinfection [3],[4]. Deliberate needle inoculation with viable parasites in a selected site, referred to as “leishmanization,” has been employed extensively as a live “vaccine” in people for generations, and is highly effective against natural exposure [5],[6],[7],[8]. However, due to reports of adverse reactions at the site of inoculation, quality control issues, and concerns over causing serious disease in immuno-compromised individuals, leishmanization has fallen out of favor [8],[9]. Employing the mouse model of L. major infection, numerous non-living [10],[11],[12],[13],[14],[15] and live-attenuated [13],[16],[17], or DNA-based [10],[18] vaccine formulations have been developed as alternatives to leishmanization, which in many cases have conferred relatively long-term protection against experimental needle challenge [10],[11],[12],[18]. In contrast, non-living vaccines, including formulations similar to those shown to work effectively in mice against needle challenge [11],[13], have yet to confer significant protection against natural exposure in people, despite the generation of measurable cell-mediated immunity [9],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28]. This contradiction between the results in humans and animal trials suggests that the correlates of vaccine efficacy developed mainly from the mouse model, namely the generation of Th1 responses and the reduction of lesion size and/or parasite number following needle challenge, may not adequately define the requirements for protection against natural transmission. Observations by Rogers et al. [29], in which vaccination with soluble leishmanial antigen plus IL-12 delayed the onset of progressive lesions following needle, but not infected sand fly challenge in BALB/c mice, support this suggestion. In addition to the delivery of infectious stage parasites into the dermis, sand flies also deposit pharmacologically active saliva, which aids in blood feeding, and egest parasite-released glycoconjugates, which accumulate behind the mouthparts in infected flies and form a promastigote secretory gel (PSG). These molecules have been shown to enhance the severity of disease when co-administered with infectious stage parasites [30],[31],[32],[33]. We have recently reported that sand fly transmission induces a qualitatively unique inflammatory response at the localized bite site that includes a dynamic recruitment of neutrophils, and that these neutrophils markedly enhance the ability of parasites to establish primary infection [34]. Thus, an analysis of the influence of sand fly transmission on vaccine efficacy is likely to be highly relevant to the generation of a Leishmania vaccine that is effective in people. Results Healed primary infection protects against infected sand fly challenge Healed primary L. major infection initiated by needle inoculation of mice has been extensively employed as a model that mimics the clinical practice of leishmanization. Mice with resolved primary lesions harbor L. major specific CD4 T cells that simultaneously produce IFN-γ, TNF-α, and IL-2 effector cytokines and mount powerful protective immunity at a site of needle re-challenge, resulting in the rapid control of parasite growth [13],[35]. In order to characterize the protective immune response following natural transmission, 4 P. duboscqi sand flies, infected with L. major (L.m.-SF), were allowed to feed on the ears of C57BL/6 mice with a healed primary lesion in the footpad. Under these conditions, a median of 2 flies will show evidence of blood engorgement, thereby ensuring parasite transmission to a sufficient number of ears to conduct the experiment, while at the same time more faithfully replicating natural transmission, which likely occurs following exposure to a single infected fly. At 1 and 3 days following exposure to the infected flies, a slight but significant increase in infiltrating CD4 T cells was found in the ears of healed mice relative to fly challenged, naïve, age-matched controls (AMC) ( Figure 1A ). At 7 days post-challenge, the number of infiltrating CD4 cells in the healed mice was dramatically increased relative to controls. In order to determine if parasite antigen was required to mediate this recruitment, healed mice were also exposed to uninfected sand fly bites (SF). Both infected or uninfected bites recruited equivalent numbers of T cells at day 3 post-bite, however, parasite antigen appeared necessary for the dramatic increase observed on day 7 ( Figure 1A ). Remarkably, Ag re-stimulation of dermal derived cells revealed Leishmania-specific IFN-γ producing CD4+ T cells at the challenge site within 24 hours, a response that gradually increased to 17% of the total CD4 T cell population at 7 days ( Figure 1B ), correlating with a >100 fold reduction in parasite numbers in the skin ( Figure 1C ). Antigen re-stimulation of T cells from the ears of healed mice exposed to uninfected sand fly bites also revealed the presence of L.m.-specific IFN-γ producing CD4+ T cells ( Figure 1B ), suggesting that a functional property of these effector cells is their ability to rapidly migrate to sites of tissue inflammation whether antigen is present or not. 10.1371/journal.ppat.1000484.g001 Figure 1 Mice with healed primary infections mount robust immunity and control parasite growth following transmission of L. major by infected sand fly bite. Ears of naïve, age matched control mice (AMC), or healed mice infected by needle inoculation s.c. in the footpad with 104 L.m. metacyclic promastigotes 22 weeks previously, were exposed to the bites of 4 uninfected (SF) or L.m.-infected P. duboscqi sand flies (L.m.-SF). Ear derived cells were analyzed at the indicated times following exposure to sand flies. (A and B) Total number of TcRβ+CD4+ T cells per ear as determined by flow cytometric analysis of duplicate samples of pooled ears (A); or frequency (total number per ear in brackets) of IFN-γ+/TcRβ+CD4+ T cells following in-vitro re-stimulation of pooled ears with BMDC plus L. major-antigen (DC+Ag) (B). (*) or (‡) in 1A indicates a significant difference (0.021
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leishmania disease development depends on the presence of apoptotic promastigotes in the virulent inoculum.

              The obligate intracellular pathogen Leishmania major survives and multiplies in professional phagocytes. The evasion strategy to circumvent killing by host phagocytes and establish a productive infection is poorly understood. Here we report that the virulent inoculum of Leishmania promastigotes contains a high ratio of annexin A5-binding apoptotic parasites. This subpopulation of parasites is characterized by a round body shape, a swollen kinetoplast, nuclear condensation, and a lack of multiplication and represents dying or already dead parasites. After depleting the apoptotic parasites from a virulent population, Leishmania do not survive in phagocytes in vitro and lose their disease-inducing ability in vivo. TGF-beta induced by apoptotic parasites is likely to mediate the silencing of phagocytes and lead to survival of infectious Leishmania populations. The data demonstrate that apoptotic promastigotes, in an altruistic way, enable the intracellular survival of the viable parasites.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                3 September 2015
                September 2015
                : 9
                : 9
                : e0003889
                Affiliations
                [1 ]College of Medicine, Swansea University, Swansea, United Kingdom
                [2 ]School of Biological Sciences, The University of Auckland, Auckland, New Zealand
                [3 ]Drugs for Neglected Diseases initiative, , Geneva, Switzerland
                [4 ]Center for Research and Training on Skin Diseases and Leprosy (CRTSDL), Tehran University Medical Sciences, Tehran, Iran
                University of Antwerp, BELGIUM
                Author notes

                The authors have declared that no competing interests exist

                Article
                PNTD-D-15-00290
                10.1371/journal.pntd.0003889
                4559374
                26334763
                862ff96d-0381-4f37-aaad-5da3fa8e1cc0
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                Page count
                Figures: 0, Tables: 1, Pages: 23
                Funding
                Emily Mears was supported by the DNDi as an intern during the drafting of this review. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Review

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article