5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Impact of original, B.1.1.7, and B.1.351/P.1 SARS-CoV-2 lineages on vaccine effectiveness of two doses of COVID-19 mRNA vaccines: Results from a nationwide case-control study in France

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We aimed to assess the effectiveness of two doses of mRNA COVID-19 vaccines against COVID-19 with the original virus and other lineages circulating in France.

          Methods

          In this nationwide case-control study, cases were SARS-CoV-2 infected adults with onset of symptoms between 14 February and 3 May 2021. Controls were non-infected adults from a national representative panel matched to cases by age, sex, region, population density and calendar week. Participants completed an online questionnaire on recent activity-related exposures and vaccination history. Information about the infecting virus was based on a screening RT-PCR for either B.1.1.7 or B.1.351/P.1 variants.

          Findings

          Included in our analysis were 7 288 adults infected with the original SARS-CoV-2 virus, 31 313 with the B.1.1.7 lineage, 2 550 with B.1.351/P1 lineages, and 3 644 controls. In multivariable analysis, the vaccine effectiveness (95% confidence interval) seven days after the second dose of mRNA vaccine was estimated at 88% (81-92), 86% (81-90) and 77% (63-86) against COVID-19 with the original virus, the B.1.1.7 lineage, and the B.1.351/P.1 lineages, respectively. Recent (2 to 6 months) history of virologically confirmed SARS-CoV-2 infection was found to be 83% (76-88), 88% (85-91) and 83% (71-90) protective against COVID-19 with the original virus, the B.1.1.7 lineage, and the B.1.351/P.1 lineages, respectively; and more distant (> 6 months) infections were 76% (54-87), 84% (75-90), and 74% (41-89) protective against COVID-19 with the original virus, the B.1.1.7 lineage, and the B.1.351/P.1 lineages, respectively.

          Interpretation

          In real-life settings, two doses of mRNA vaccines proved to be effective against COVID-19 with the original virus, B.1.1.7 lineage and B.1.351/P.1 lineages.

          Funding

          Institut Pasteur, Research & Action Emerging Infectious Diseases (REACTing), Fondation de France (Alliance “Tous unis contre le virus”).

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine

          Abstract Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting coronavirus disease 2019 (Covid-19) have afflicted tens of millions of people in a worldwide pandemic. Safe and effective vaccines are needed urgently. Methods In an ongoing multinational, placebo-controlled, observer-blinded, pivotal efficacy trial, we randomly assigned persons 16 years of age or older in a 1:1 ratio to receive two doses, 21 days apart, of either placebo or the BNT162b2 vaccine candidate (30 μg per dose). BNT162b2 is a lipid nanoparticle–formulated, nucleoside-modified RNA vaccine that encodes a prefusion stabilized, membrane-anchored SARS-CoV-2 full-length spike protein. The primary end points were efficacy of the vaccine against laboratory-confirmed Covid-19 and safety. Results A total of 43,548 participants underwent randomization, of whom 43,448 received injections: 21,720 with BNT162b2 and 21,728 with placebo. There were 8 cases of Covid-19 with onset at least 7 days after the second dose among participants assigned to receive BNT162b2 and 162 cases among those assigned to placebo; BNT162b2 was 95% effective in preventing Covid-19 (95% credible interval, 90.3 to 97.6). Similar vaccine efficacy (generally 90 to 100%) was observed across subgroups defined by age, sex, race, ethnicity, baseline body-mass index, and the presence of coexisting conditions. Among 10 cases of severe Covid-19 with onset after the first dose, 9 occurred in placebo recipients and 1 in a BNT162b2 recipient. The safety profile of BNT162b2 was characterized by short-term, mild-to-moderate pain at the injection site, fatigue, and headache. The incidence of serious adverse events was low and was similar in the vaccine and placebo groups. Conclusions A two-dose regimen of BNT162b2 conferred 95% protection against Covid-19 in persons 16 years of age or older. Safety over a median of 2 months was similar to that of other viral vaccines. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine

            Abstract Background Vaccines are needed to prevent coronavirus disease 2019 (Covid-19) and to protect persons who are at high risk for complications. The mRNA-1273 vaccine is a lipid nanoparticle–encapsulated mRNA-based vaccine that encodes the prefusion stabilized full-length spike protein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes Covid-19. Methods This phase 3 randomized, observer-blinded, placebo-controlled trial was conducted at 99 centers across the United States. Persons at high risk for SARS-CoV-2 infection or its complications were randomly assigned in a 1:1 ratio to receive two intramuscular injections of mRNA-1273 (100 μg) or placebo 28 days apart. The primary end point was prevention of Covid-19 illness with onset at least 14 days after the second injection in participants who had not previously been infected with SARS-CoV-2. Results The trial enrolled 30,420 volunteers who were randomly assigned in a 1:1 ratio to receive either vaccine or placebo (15,210 participants in each group). More than 96% of participants received both injections, and 2.2% had evidence (serologic, virologic, or both) of SARS-CoV-2 infection at baseline. Symptomatic Covid-19 illness was confirmed in 185 participants in the placebo group (56.5 per 1000 person-years; 95% confidence interval [CI], 48.7 to 65.3) and in 11 participants in the mRNA-1273 group (3.3 per 1000 person-years; 95% CI, 1.7 to 6.0); vaccine efficacy was 94.1% (95% CI, 89.3 to 96.8%; P<0.001). Efficacy was similar across key secondary analyses, including assessment 14 days after the first dose, analyses that included participants who had evidence of SARS-CoV-2 infection at baseline, and analyses in participants 65 years of age or older. Severe Covid-19 occurred in 30 participants, with one fatality; all 30 were in the placebo group. Moderate, transient reactogenicity after vaccination occurred more frequently in the mRNA-1273 group. Serious adverse events were rare, and the incidence was similar in the two groups. Conclusions The mRNA-1273 vaccine showed 94.1% efficacy at preventing Covid-19 illness, including severe disease. Aside from transient local and systemic reactions, no safety concerns were identified. (Funded by the Biomedical Advanced Research and Development Authority and the National Institute of Allergy and Infectious Diseases; COVE ClinicalTrials.gov number, NCT04470427.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting

              Abstract Background As mass vaccination campaigns against coronavirus disease 2019 (Covid-19) commence worldwide, vaccine effectiveness needs to be assessed for a range of outcomes across diverse populations in a noncontrolled setting. In this study, data from Israel’s largest health care organization were used to evaluate the effectiveness of the BNT162b2 mRNA vaccine. Methods All persons who were newly vaccinated during the period from December 20, 2020, to February 1, 2021, were matched to unvaccinated controls in a 1:1 ratio according to demographic and clinical characteristics. Study outcomes included documented infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), symptomatic Covid-19, Covid-19–related hospitalization, severe illness, and death. We estimated vaccine effectiveness for each outcome as one minus the risk ratio, using the Kaplan–Meier estimator. Results Each study group included 596,618 persons. Estimated vaccine effectiveness for the study outcomes at days 14 through 20 after the first dose and at 7 or more days after the second dose was as follows: for documented infection, 46% (95% confidence interval [CI], 40 to 51) and 92% (95% CI, 88 to 95); for symptomatic Covid-19, 57% (95% CI, 50 to 63) and 94% (95% CI, 87 to 98); for hospitalization, 74% (95% CI, 56 to 86) and 87% (95% CI, 55 to 100); and for severe disease, 62% (95% CI, 39 to 80) and 92% (95% CI, 75 to 100), respectively. Estimated effectiveness in preventing death from Covid-19 was 72% (95% CI, 19 to 100) for days 14 through 20 after the first dose. Estimated effectiveness in specific subpopulations assessed for documented infection and symptomatic Covid-19 was consistent across age groups, with potentially slightly lower effectiveness in persons with multiple coexisting conditions. Conclusions This study in a nationwide mass vaccination setting suggests that the BNT162b2 mRNA vaccine is effective for a wide range of Covid-19–related outcomes, a finding consistent with that of the randomized trial.
                Bookmark

                Author and article information

                Journal
                Lancet Reg Health Eur
                Lancet Reg Health Eur
                The Lancet Regional Health. Europe
                The Author(s). Published by Elsevier Ltd.
                2666-7762
                13 July 2021
                September 2021
                13 July 2021
                : 8
                : 100171
                Affiliations
                [a ]Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
                [b ]Sorbonne University, Paris, France
                [c ]Institut Pasteur, Centre for Translational Research, Paris, France
                [d ]Caisse Nationale d'Assurance Maladie, Paris, France
                [e ]Institut IPSOS, Paris, France
                [f ]Santé Publique France, Saint-Maurice, France
                [g ]Institut Pasteur, Mathematical Modelling of Infectious Diseases Unit; UMR2000; CNRS, Paris, France
                [h ]CNR des Virus des Infections Respiratoires, Institut des Agents Infectieux, Hospices Civils de Lyon
                [i ]Virpath, Centre International de Recherche En Infectiologie, Université de Lyon, Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, UCBL, Lyon, France
                [j ]Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur CNRS UMR 3569; Université de Paris, Paris, France
                [k ]National Reference Center for Respiratory Viruses, Institut Pasteur, Paris, France
                [l ]Mutualized Platform of Microbiology, Pasteur International Bioresources Network, Institut Pasteur, Paris, France
                [m ]Sorbonne Université, Inserm, IPLESP, hôpital Saint-Antoine, APHP, 27 rue Chaligny, Paris F75571, France
                [n ]Conservatoire national des arts et métiers, Unité PACRI, Paris, France
                Author notes
                [* ]Corresponding author at: Emerging Diseases Epidemiology Unit, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France.
                Article
                S2666-7762(21)00148-4 100171
                10.1016/j.lanepe.2021.100171
                8277121
                34278372
                85dc6376-5400-45f9-86f8-9c6050cf0b19
                © 2021 The Author(s)

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Research Paper

                covid-19,vaccine effectiveness,sars-cov-2 variants,epidemiology,case-control study

                Comments

                Comment on this article