7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Validation of the safety of MDCK cells as a substrate for the production of a cell-derived influenza vaccine

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell culture-based production methods may assist in meeting increasing demand for seasonal influenza vaccines and developing production flexibility required for addressing influenza pandemics. MDCK-33016PF cells are used in propagation of a cell-based seasonal influenza vaccine (Optaflu ®); but, like most continuous cell lines, can grow in immunocompromised mice to produce tumors. It is, therefore, essential that no residual cells remain within the vaccine, that cell lysates or DNA are not oncogenic, and that the cell substrate does not contain oncogenic viruses or oncogenic DNA. Multiple, redundant processes ensure the safety of influenza vaccines produced in MDCK-33016PF cells. The probability of a residual cell being present in a dose of vaccine is approximately 1 in 10 34. Residual MDCK-DNA is ≤10 ng per dose and the ß-propiolactone used to inactivate influenza virus results in reduction of detectable DNA to less than 200 base pairs (bp). Degenerate PCR and specific PCR confirm exclusion of oncogenic viruses. The manufacturing process has been validated for its capacity to remove and inactivate viruses. We conclude that the theoretical risks arising from manufacturing seasonal influenza vaccine using MDCK-33016PF cells are reduced to levels that are effectively zero by the multiple, orthogonal processes used during production.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells.

          The ability to isolate and propagate influenza virus is an essential tool for the yearly surveillance of circulating virus strains and to ensure accurate clinical diagnosis for appropriate treatment. The suitability of MDCK-SIAT1 cells, engineered to express increased levels of alpha-2,6-linked sialic acid receptors, as an alternative to conventional MDCK cells for isolation of circulating influenza virus was assessed. A greater number of influenza A (H1N1 and H3N2) and B viruses from stored human clinical specimens collected between 2005 and 2007 were isolated following inoculation in MDCK-SIAT1 cells than in MDCK cells. In addition, a higher titer of virus was recovered following culture in MDCK-SIAT1 cells. All A(H1N1) viruses recovered from MDCK-SIAT1 cells were able to agglutinate both turkey and guinea pig red blood cells (RBC), while half of the A(H3N2) viruses recovered after passage in MDCK-SIAT1 cells lost the ability to agglutinate turkey RBC. Importantly, the HA-1 domain of the hemagglutinin gene was genetically stable after passaging in MDCK-SIAT1 cells, a feature not always seen following MDCK cell or embryonated chicken egg passage of human influenza virus. These data indicate that the MDCK-SIAT1 cell line is superior to conventional MDCK cells for isolation of human influenza virus from clinical specimens and may be used routinely for the isolation and propagation of current human influenza viruses for surveillance, diagnostic, and research purposes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Direct sequencing of the HA gene of influenza (H3N2) virus in original clinical samples reveals sequence identity with mammalian cell-grown virus.

            When influenza (H3N2) viruses from infected individuals are grown in embryonated chicken eggs, viruses are isolated which differ antigenically and structurally from viruses grown in mammalian Madin-Darby canine kidney (MDCK) cell culture [G.C. Schild, J.S. Oxford, J.C. de Jong, and R.G. Webster, Nature (London) 303:706-709, 1983]. To determine which of these viruses is most representative of virus replicating in the infected individual, a region of the HA gene of virus present in original clinical samples was amplified by using the polymerase chain reaction and sequenced directly. Comparison of 170 amino acid residues of HA1 flanking and containing the receptor-binding site and antigenic sites indicated that over this region, the HA of virus replicating in the infected individual was identical to that of virus after growth in MDCK cells and was distinct from the HA of viruses grown in eggs. Therefore, cultivation of human influenza H3N2 virus in mammalian MDCK cells results in a virus similar to the predominant population of virus found in the infected individual.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production.

              MDCK cells are currently being considered as an alternative to embryonated eggs for influenza virus propagation and hemagglutinin (HA) production intended for vaccine manufacturing. MDCK cells were found suitable for the virus production but their inability to grow in suspension burdens the process of scale up and hence their production capability. Anchorage-dependent MDCK cells were converted to anchorage-independent cells, capable of growing in suspension as a result of transfection with the human siat7e gene (ST6GalNac V). This gene was previously identified as having an important role in cellular adhesion when the transcriptions of genes from anchorage-dependent and anchorage-independent HeLa cells were compared. Unlike the parental MDCK cells, the siat7e-expressing cells were capable of growing in shake flasks as suspension cultures, achieving maximum concentration of 7 x 10(5) cells/mL while keeping close to 100% viability throughout the growth phase. In production experiments, the siat7e-expressing cells were infected with the Influenza B/Victoria/504/2000 strain. It was determined that the cell-derived viruses retained similar antigenic properties as those obtained from egg-derived viruses and their nucleotide sequences were identical. The specific production of hemagglutinin (expressed in hemagglutination units per 10(6) cells) from the siat7e-expressing cells was approximately 20 times higher than the specific production from the parental MDCK cells. If this suspension process scales up, the production potential of HA from 10 L of siat7e-expressing cells at a concentration of 10(6) cells/mL would be equivalent to the amount of HA obtained from 10,000 embryonated eggs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biologicals
                Biologicals
                Biologicals
                The International Association for Biologicals. Published by Elsevier Ltd.
                1045-1056
                1095-8320
                7 June 2010
                September 2010
                7 June 2010
                : 38
                : 5
                : 544-551
                Affiliations
                [a ]BioReliance Corporation, Rockville, USA
                [b ]PharmaNet Consulting, Princeton, USA
                [c ]Leukaemia Research Fund’s Human Virus Laboratory, University of Glasgow, Glasgow, UK
                [d ]Novartis Vaccines and Diagnostics, Cambridge, MA, USA
                Author notes
                []Corresponding author. Tel.: +1 301 738 1000; fax: +1 301 610 2590. David.Onions@ 123456bioreliance.com
                Article
                S1045-1056(10)00098-9
                10.1016/j.biologicals.2010.04.003
                7129197
                20537553
                85ce52ea-0c27-4764-ac6f-a04a27464ac4
                Copyright © 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 3 March 2010
                : 1 April 2010
                : 7 April 2010
                Categories
                Article

                influenza vaccine,mdck cell,oncogenicity,tumorigenicity
                influenza vaccine, mdck cell, oncogenicity, tumorigenicity

                Comments

                Comment on this article