20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Model-Independent Bounds on Kinetic Mixing

      , ,
      Advances in High Energy Physics
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New Abelian vector bosons can kinetically mix with the hypercharge gauge boson of the Standard Model. This letter computes the model-independent limits on vector bosons with masses from 1 GeV to 1 TeV. The limits arise from the numerous e + e experiments that have been performed in this energy range and bound the kinetic mixing by ϵ 0.03 for most of the mass range studied, regardless of any additional interactions that the new vector boson may have.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: not found
          • Article: not found

          Estimation of oblique electroweak corrections

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A Theory of Dark Matter

            We propose a comprehensive theory of dark matter that explains the recent proliferation of unexpected observations in high-energy astrophysics. Cosmic ray spectra from ATIC and PAMELA require a WIMP with mass M_chi ~ 500 - 800 GeV that annihilates into leptons at a level well above that expected from a thermal relic. Signals from WMAP and EGRET reinforce this interpretation. Taken together, we argue these facts imply the presence of a GeV-scale new force in the dark sector. The long range allows a Sommerfeld enhancement to boost the annihilation cross section as required, without altering the weak scale annihilation cross section during dark matter freezeout in the early universe. If the dark matter annihilates into the new force carrier, phi, its low mass can force it to decay dominantly into leptons. If the force carrier is a non-Abelian gauge boson, the dark matter is part of a multiplet of states, and splittings between these states are naturally generated with size alpha m_phi ~ MeV, leading to the eXciting dark matter (XDM) scenario previously proposed to explain the positron annihilation in the galactic center observed by the INTEGRAL satellite. Somewhat smaller splittings would also be expected, providing a natural source for the parameters of the inelastic dark matter (iDM) explanation for the DAMA annual modulation signal. Since the Sommerfeld enhancement is most significant at low velocities, early dark matter halos at redshift ~10 potentially produce observable effects on the ionization history of the universe, and substructure is more detectable than with a conventional WIMP. Moreover, the low velocity dispersion of dwarf galaxies and Milky Way subhalos can greatly increase the substructure annihilation signal.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Vacuum polarization effects of new physics on electroweak processes

                Bookmark

                Author and article information

                Journal
                Advances in High Energy Physics
                Advances in High Energy Physics
                Hindawi Limited
                1687-7357
                1687-7365
                2011
                2011
                : 2011
                :
                : 1-8
                Article
                10.1155/2011/859762
                85c63577-9ac0-447e-a55e-c1d121347a4d
                © 2011

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article