0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The impact of COVID-19 on microRNA and CD marker expression in AML patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Acute myeloid leukaemia (AML) is an aggressive leukaemia characterised by uncontrolled blast cell proliferation. miRNAs and Clusters of Differentiation (CD) molecules play essential roles in AML progression. This study aims to investigate the effect of COVID-19 on the expression of circulating miRNA and CD molecules in AML. This cross-sectional study recruited 32 AML patients and 20 controls. Blood samples were collected and analysed using molecular cytogenetic, miRNA/mRNA expression, and flow cytometry techniques. The expression of miRNAs varied significantly between patients with AML and control individuals. The co-expression of these miRNAs was higher (P < 0.05), indicating that the presence of one miRNA led to increased expression of other miRNAs. A differential correlation was observed between miRNAs and CD markers. Additionally, miRNA 16, miRNA 21, and miRNA 221 showed significant downregulation (P < 0.05 and P < 0.01, respectively) in AML patients with COVID-19 infection compared to those without a disease. Interestingly, this study identified a higher expression level (P < 0.01) of miRNA 137 as a novel biomarker for AML patients. Moreover, the expression of miRNA 137 showed a high correlation (P < 0.05) with most of the CD markers examined in this study and FISH features data. Furthermore, a strong correlation (P < 0.01) was observed between CD markers and miRNA among AML patients with positive and negative COVID-19 infection. These data demonstrated that COVID-19 contributed to increased expression of microRNAs in AML patients. MicroRNA 137 was identified as a novel microRNA that exhibited significant differences between patients and healthy individuals, highlighting its role in AML pathogenesis.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges

          Highlights • Emergence of 2019 novel coronavirus (2019-nCoV) in China has caused a large global outbreak and major public health issue. • At 9 February 2020, data from the WHO has shown >37 000 confirmed cases in 28 countries (>99% of cases detected in China). • 2019-nCoV is spread by human-to-human transmission via droplets or direct contact. • Infection estimated to have an incubation period of 2–14 days and a basic reproduction number of 2.24–3.58. • Controlling infection to prevent spread of the 2019-nCoV is the primary intervention being used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation

            MicroRNAs (miRNAs) are a class of non-coding RNAs that play important roles in regulating gene expression. The majority of miRNAs are transcribed from DNA sequences into primary miRNAs and processed into precursor miRNAs, and finally mature miRNAs. In most cases, miRNAs interact with the 3′ untranslated region (3′ UTR) of target mRNAs to induce mRNA degradation and translational repression. However, interaction of miRNAs with other regions, including the 5′ UTR, coding sequence, and gene promoters, have also been reported. Under certain conditions, miRNAs can also activate translation or regulate transcription. The interaction of miRNAs with their target genes is dynamic and dependent on many factors, such as subcellular location of miRNAs, the abundancy of miRNAs and target mRNAs, and the affinity of miRNA-mRNA interactions. miRNAs can be secreted into extracellular fluids and transported to target cells via vesicles, such as exosomes, or by binding to proteins, including Argonautes. Extracellular miRNAs function as chemical messengers to mediate cell-cell communication. In this review, we provide an update on canonical and non-canonical miRNA biogenesis pathways and various mechanisms underlying miRNA-mediated gene regulations. We also summarize the current knowledge of the dynamics of miRNA action and of the secretion, transfer, and uptake of extracellular miRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Regulatory Mechanism of MicroRNA Expression in Cancer

              Altered gene expression is the primary molecular mechanism responsible for the pathological processes of human diseases, including cancer. MicroRNAs (miRNAs) are virtually involved at the post-transcriptional level and bind to 3′ UTR of their target messenger RNA (mRNA) to suppress expression. Dysfunction of miRNAs disturbs expression of oncogenic or tumor-suppressive target genes, which is implicated in cancer pathogenesis. As such, a large number of miRNAs have been found to be downregulated or upregulated in human cancers and to function as oncomiRs or oncosuppressor miRs. Notably, the molecular mechanism underlying the dysregulation of miRNA expression in cancer has been recently uncovered. The genetic deletion or amplification and epigenetic methylation of miRNA genomic loci and the transcription factor-mediated regulation of primary miRNA often alter the landscape of miRNA expression in cancer. Dysregulation of the multiple processing steps in mature miRNA biogenesis can also cause alterations in miRNA expression in cancer. Detailed knowledge of the regulatory mechanism of miRNAs in cancer is essential for understanding its physiological role and the implications of cancer-associated dysfunction and dysregulation. In this review, we elucidate how miRNA expression is deregulated in cancer, paying particular attention to the cancer-associated transcriptional and post-transcriptional factors that execute miRNA programs.
                Bookmark

                Author and article information

                Contributors
                dara.mohammad@su.edu.krd , dara.mohammad@ki.se
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 June 2024
                20 June 2024
                2024
                : 14
                : 14251
                Affiliations
                [1 ]Department of Biology, College of Education, Salahaddin University-Erbil, ( https://ror.org/02124dd11) Erbil, Kurdistan Region Iraq
                [2 ]College of Agricultural Engineering Sciences, Salahaddin University-Erbil, ( https://ror.org/02124dd11) Erbil, Kurdistan Region Iraq
                [3 ]Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, ( https://ror.org/056d84691) 141 83 Stockholm, Sweden
                Article
                64775
                10.1038/s41598-024-64775-1
                11190249
                38902412
                8594f005-527f-489d-be34-f349c206c775
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 November 2023
                : 12 June 2024
                Funding
                Funded by: Karolinska Institute
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                aml,covid-19,microrna,cd biomarker,gene mutations,cancer,biochemistry,cell biology,genetics,immunology,molecular biology,biomarkers,diseases

                Comments

                Comment on this article