7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Porcine reproductive and respiratory syndrome virus infection induces endoplasmic reticulum stress, facilitates virus replication, and contributes to autophagy and apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During viral infection, the host cell synthesizes high amounts of viral proteins, which often causes stress to the endoplasmic reticulum (ER). To manage abnormal ER stress, mammalian cells trigger a response called the unfolded protein response (UPR). Previous studies have indicated that porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has been devastating the swine industry worldwide, can induce ER stress and activate UPR, however, the activation pathways and the biological significance requires further investigation. In this study, we demonstrated that, among the three types of UPR pathways, PRRSV infection induced PERK and IRE1 pathways, but not the ATF6 pathway. Furthermore, the induction of UPR promoted PRRSV replication. We also found that PRRSV-induced UPR, particularly the PERK pathway, was involved in the induction of autophagy, a cellular degradation process that can alleviate cell stress. Besides, we also provided insights into the ER stress-mediated apoptosis in response to PRRSV infection. PRRSV infection induced the expression of the transcription factor CHOP, which activated caspase 3 and PARP led to ER stress-mediated apoptosis. Using 3-Methyladenine (3-MA) to inhibit autophagy, the increased ER stress and cell apoptosis were observed in the PRRSV infected cell. Taken together, our results revealed the associations of ER stress, autophagy, and apoptosis during PRRSV infection, helping us to further understand how PRRSV interacts with host cells.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Nidovirales: a new order comprising Coronaviridae and Arteriviridae.

          D Cavanagh (1997)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The endoplasmic reticulum and the unfolded protein response.

            The endoplasmic reticulum (ER) is the site where proteins enter the secretory pathway. Proteins are translocated into the ER lumen in an unfolded state and require protein chaperones and catalysts of protein folding to attain their final appropriate conformation. A sensitive surveillance mechanism exists to prevent misfolded proteins from transiting the secretory pathway and ensures that persistently misfolded proteins are directed towards a degradative pathway. In addition, those processes that prevent accumulation of unfolded proteins in the ER lumen are highly regulated by an intracellular signaling pathway known as the unfolded protein response (UPR). The UPR provides a mechanism by which cells can rapidly adapt to alterations in client protein-folding load in the ER lumen by expanding the capacity for protein folding. In addition, a variety of insults that disrupt protein folding in the ER lumen also activate the UPR. These include changes in intralumenal calcium, altered glycosylation, nutrient deprivation, pathogen infection, expression of folding-defective proteins, and changes in redox status. Persistent protein misfolding initiates apoptotic cascades that are now known to play fundamental roles in the pathogenesis of multiple human diseases including diabetes, atherosclerosis and neurodegenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress.

              In vertebrates, three proteins--PERK, IRE1alpha, and ATF6alpha--sense protein-misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve cellular function. The mechanism by which this unfolded protein response (UPR) protects ER function during stress is not clear. To address this issue, we have deleted Atf6alpha in the mouse. ATF6alpha is neither essential for basal expression of ER protein chaperones nor for embryonic or postnatal development. However, ATF6alpha is required in both cells and tissues to optimize protein folding, secretion, and degradation during ER stress and thus to facilitate recovery from acute stress and tolerance to chronic stress. Challenge of Atf6alpha null animals in vivo compromises organ function and survival despite functional overlap between UPR sensors. These results suggest that the vertebrate ATF6alpha pathway evolved to maintain ER function when cells are challenged with chronic stress and provide a rationale for the overlap among the three UPR pathways.
                Bookmark

                Author and article information

                Contributors
                fanglr@mail.hzau.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                4 August 2020
                4 August 2020
                2020
                : 10
                : 13131
                Affiliations
                [1 ]ISNI 0000 0000 9927 0537, GRID grid.417303.2, School of Life Science, , Xuzhou Medical University, ; Xuzhou, 221004 China
                [2 ]ISNI 0000 0004 1790 4137, GRID grid.35155.37, State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, , Huazhong Agricultural University, ; Wuhan, 430070 China
                [3 ]Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 China
                [4 ]GRID grid.413389.4, Department of Oncology, , The Affiliated Hospital of Xuzhou Medical University, ; Xuzhou, 221004 China
                Author information
                http://orcid.org/0000-0003-0023-9188
                Article
                69959
                10.1038/s41598-020-69959-z
                7403369
                32753633
                85943489-2ea3-4852-8882-7e268cbb831b
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 10 February 2020
                : 16 July 2020
                Funding
                Funded by: Natural Science Foundation of Jiangsu province
                Award ID: BK20170251
                Award Recipient :
                Funded by: Applied Basic Research Program of Xuzhou Jiangsu
                Award ID: KC18046
                Award Recipient :
                Funded by: National Natural Sciences Foundation of China
                Award ID: 31490602
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                zoology,virology
                Uncategorized
                zoology, virology

                Comments

                Comment on this article