26
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutations in the pfmdr1, cg2, and pfcrt genes in Plasmodium falciparum samples from endemic malaria areas in Rondonia and Pará State, Brazilian Amazon Region Translated title: Mutações nos genes pfmdr1, cg2 e pfcrt em isolados de Plasmodium falciparum provenientes de localidades malarígenas dos Estados de Rondônia e Pará, Amazônia Legal Brasileira

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objectives of this study were to investigate the molecular basis for Plasmodium falciparum resistance to chloroquine in isolates from the Brazilian Amazon and to identify polymorphisms in the pfmdr1 gene, codons 184, 1042, and 1246, the kappa and gamma regions of the cg2 gene, and the K76T mutation of the pfcrt gene, in order to calculate the distribution of polymorphism within each target gene, comparing samples from distinct geographic areas, using allele-specific polymerase chain reaction (PCR) for the pfmdr gene and PCR plus restriction fragment length polymorphism (RFLP) for the cg2 and pfcrt genes. The sample consisted of 40 human blood isolates, already collected and morphologically diagnosed as carriers of P. falciparum parasites, from four localities: Porto Velho in Rondonia State and Maraba, Itaituba, and Tailandia in Pará State. Distribution of P. falciparum in vitro chloroquine resistance in the isolates was 100% for pfmdr1, cg2 gamma region, and pfcrt, except for the polymorphism in the cg2 kappa region, which was not found.

          Translated abstract

          O estudo foi desenvolvido para investigar a base molecular da resistência do Plasmodium falciparum à cloroquina em isolados da região Amazônica brasileira e identificar os polimorfismos nos códons TYR184PHE, ASN1042ASP e ASP1246TYR do gene pfmdr1, as regiões kappa e gamma do gene cg2 e a mutação K76T do gene pfcrt, a fim de determinar a distribuição percentual dos alelos de cada gene estudado, comparando amostras de áreas geográficas distintas, utilizando a reação em cadeia da polimerase (PCR) alelo-específica para o pfmdr1 e a PCR e o polimorfismo do comprimento do fragmento de restrição (RFLP) para os genes cg2 e pfcrt. A amostra foi constituída de quarenta isolados de sangue humano já coletados e microscopicamente diagnosticados com malária por P. falciparum das localidades de Porto Velho (Rondônia) e Marabá, Itaituba e Tailândia (Pará). A distribuição percentual da resistência in vitro do P. falciparum à cloroquina nas amostras estudadas foi de 100% de resistência para os genes pfmdr1, região gamma do cg2 e pfcrt. O polimorfismo na região kappa do gene cg2 não foi encontrado nas amostras estudadas.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum.

          Throughout the latter half of this century, the development and spread of resistance to most front-line antimalarial compounds used in the prevention and treatment of the most severe form of human malaria has given cause for grave clinical concern. Polymorphisms in pfmdr1, the gene encoding the P-glycoprotein homologue 1 (Pgh1) protein of Plasmodium falciparum, have been linked to chloroquine resistance; Pgh1 has also been implicated in resistance to mefloquine and halofantrine. However, conclusive evidence of a direct causal association between pfmdr1 and resistance to these antimalarials has remained elusive, and a single genetic cross has suggested that Pgh1 is not involved in resistance to chloroquine and mefloquine. Here we provide direct proof that mutations in Pgh1 can confer resistance to mefloquine, quinine and halofantrine. The same mutations influence parasite resistance towards chloroquine in a strain-specific manner and the level of sensitivity to the structurally unrelated compound, artemisinin. This has important implications for the development and efficacy of future antimalarial agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contribution of the pfmdr1 gene to antimalarial drug-resistance.

            The emergence of drug-resistance poses a major obstacle to the control of malaria. A homolog of the major multidrug-transporter in mammalian cells was identified, Plasmodium falciparum multidrug resistance protein-1, pfmdr1, also known as the P-glycoprotein homolog 1, Pgh-1. Several studies have demonstrated strong, although incomplete, associations between resistance to the widely used antimalarial drug chloroquine and mutation of the pfmdr1 gene in both laboratory and field isolates. Genetic studies have confirmed a link between mutation of the pfmdr1 gene and chloroquine-resistance. Although not essential for chloroquine-resistance, pfmdr1 plays a role in modulating levels of resistance. At the same time it appears to be a significant component in resistance to the structurally related drug quinine. A strong association has been observed between possession of the wildtype form of pfmdr1, amplification of pfmdr1 and resistance to hydrophobic drugs such as the arylaminoalcohol mefloquine and the endoperoxide artemisinin derivatives in field isolates. This is supported by genetic studies. The arylaminoalcohol and endoperoxide drugs are structurally unrelated drugs and this resistance resembles true multidrug resistance. Polymorphism in pfmdr1 and gene amplification has been observed throughout the world and their usefulness in predicting resistance levels is influenced by the history of drug selection of each population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amplification of a gene related to mammalian mdr genes in drug-resistant Plasmodium falciparum.

              The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.
                Bookmark

                Author and article information

                Journal
                csp
                Cadernos de Saúde Pública
                Cad. Saúde Pública
                Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz (Rio de Janeiro, RJ, Brazil )
                0102-311X
                1678-4464
                December 2006
                : 22
                : 12
                : 2703-2711
                Affiliations
                [02] São Paulo orgnameFaculdade de Medicina de São José do Rio Preto orgdiv1Departamento de Doenças Dermatológicas, Infecciosas e Parasitárias Brazil
                [01] Belém orgnameInstituto Evandro Chagas orgdiv1Seção de Parasitologia Brazil
                Article
                S0102-311X2006001200019 S0102-311X(06)02201219
                10.1590/S0102-311X2006001200019
                85615d50-2199-440a-a893-9cff3f733783

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 04 July 2005
                : 25 October 2005
                : 08 November 2005
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 38, Pages: 9
                Product

                SciELO Public Health

                Self URI: Full text available only in PDF format (EN)
                Categories
                Articles

                Chloroquine,Plasmodium falciparum,Cloroquina,Polimorfismo Genético,Genetic Polymorphism

                Comments

                Comment on this article

                scite_

                Similar content270

                Cited by3

                Most referenced authors391