7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selective lysis of breast carcinomas by simultaneous stimulation of sodium channels and blockade of sodium pumps

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sodium influx through voltage-gated sodium channels (VGSCs) coupled with balanced removal of sodium ions via Na +, K +-ATPase is a major determinant of cellular homeostasis and intracellular ionic concentration. Interestingly, many metastatic carcinomas express high levels of these channels. We hypothesized that if excess VGSCs are activated and Na +, K +-ATPase is simultaneously blocked, the intracellular Na + concentration should increase, resulting in water movement into the cell, causing swelling and lytic cell death. MDA-MB-231 breast cancer cells over-express VGSCs by 7-fold. To test our hypothesis, we treated these cells in vitro with the Na +, K +-ATPase blocker, ouabain, and then stimulated with a sublethal electric current. For in vivo histologic and survival studies, MDA-MB-231 xenografts were established in Nu/J mice. Mice injected with saline or ouabain were electrically stimulated with trains of 10 msec 10V DC pulses. Within seconds to minutes, the cells swelled and lysed. MCF-10a cells, which express normal VGSCs levels, were unaffected by this treatment. Cells from the weakly-malignant cell line, MCF-7, which express 3-fold greater VGSCs than MCF-10a cells, displayed an intermediate time-to-lysis. The rate of lysis correlated directly with the degree of sodium channel expression and malignancy. We also demonstrated efficacy in cell lines from prostate, colon and lung carcinomas. Treated MDA-MB-231 xenografts showed 60–80% cell death. In survival studies, TOL-treated mice showed significantly slower tumor growth vs. controls. These results are evidence that this ”targeted osmotic lysis” represents a novel method for selectively killing cancer cells and warrants further investigation as a potential treatment for advanced and end-stage breast cancer.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic determinants of cancer metastasis.

          Metastasis can be viewed as an evolutionary process, culminating in the prevalence of rare tumour cells that overcame stringent physiological barriers as they separated from their original environment and developmental fate. This phenomenon brings into focus long-standing questions about the stage at which cancer cells acquire metastatic abilities, the relationship of metastatic cells to their tumour of origin, the basis for metastatic tissue tropism, the nature of metastasis predisposition factors and, importantly, the identity of genes that mediate these processes. With knowledge cemented in decades of research into tumour-initiating events, current experimental and conceptual models are beginning to address the genetic basis for cancer colonization of distant organs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis.

            Ion channel activity is involved in several basic cellular behaviors that are integral to metastasis (e.g., proliferation, motility, secretion, and invasion), although their contribution to cancer progression has largely been ignored. The purpose of this study was to investigate voltage-gated Na(+) channel (VGSC) expression and its possible role in human breast cancer. Functional VGSC expression was investigated in human breast cancer cell lines by patch clamp recording. The contribution of VGSC activity to directional motility, endocytosis, and invasion was evaluated by in vitro assays. Subsequent identification of the VGSC alpha-subunit(s) expressed in vitro was achieved using reverse transcription-PCR, immunocytochemistry, and Western blot techniques and used to investigate VGSCalpha expression and its association with metastasis in vivo. VGSC expression was significantly up-regulated in metastatic human breast cancer cells and tissues, and VGSC activity potentiated cellular directional motility, endocytosis, and invasion. Reverse transcription-PCR revealed that Na(v)1.5, in its newly identified "neonatal" splice form, was specifically associated with strong metastatic potential in vitro and breast cancer progression in vivo. An antibody specific for this form confirmed up-regulation of neonatal Na(v)1.5 protein in breast cancer cells and tissues. Furthermore, a strong correlation was found between neonatal Na(v)1.5 expression and clinically assessed lymph node metastasis. Up-regulation of neonatal Na(v)1.5 occurs as an integral part of the metastatic process in human breast cancer and could serve both as a novel marker of the metastatic phenotype and a therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of metastasis

              Metastasis is an enormously complex process that remains to be a major problem in the management of cancer. The fact that cancer patients might develop metastasis after years or even decades from diagnosis of the primary tumor makes the metastatic process even more complex. Over the years many hypotheses were developed to try to explain the inefficiency of the metastatic process, but none of these theories completely explains the current biological and clinical observations. In this review we summarize some of the proposed models that were developed in attempt to understand the mechanisms of tumor dissemination and colonization as well as metastatic progression.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 March 2018
                26 February 2018
                : 9
                : 21
                : 15606-15615
                Affiliations
                1 Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
                2 Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
                3 Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
                4 Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, USA
                5 Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
                6 Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA
                7 Center of Excellence for Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
                Author notes
                Correspondence to: Harry J. Gould III, hgould@ 123456lsuhsc.edu
                Article
                24581
                10.18632/oncotarget.24581
                5884651
                853e4401-1af2-40bd-a232-1895d4426103
                Copyright: © 2018 Gould et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 October 2017
                : 21 February 2018
                Categories
                Research Paper

                Oncology & Radiotherapy
                targeted osmotic lysis,epithelial carcinoma,cancer,sodium channels,sodium pumps

                Comments

                Comment on this article