23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives

      review-article
      , , *
      Molecules
      MDPI
      antibiotic resistance, MDR bacterial strains, new antibiotics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present work aims to examine the worrying problem of antibiotic resistance and the emergence of multidrug-resistant bacterial strains, which have now become really common in hospitals and risk hindering the global control of infectious diseases. After a careful examination of these phenomena and multiple mechanisms that make certain bacteria resistant to specific antibiotics that were originally effective in the treatment of infections caused by the same pathogens, possible strategies to stem antibiotic resistance are analyzed. This paper, therefore, focuses on the most promising new chemical compounds in the current pipeline active against multidrug-resistant organisms that are innovative compared to traditional antibiotics: Firstly, the main antibacterial agents in clinical development (Phase III) from 2017 to 2020 are listed (with special attention on the treatment of infections caused by the pathogens Neisseria gonorrhoeae, including multidrug-resistant isolates, and Clostridium difficile), and then the paper moves on to the new agents of pharmacological interest that have been approved during the same period. They include tetracycline derivatives (eravacycline), fourth generation fluoroquinolones (delafloxacin), new combinations between one β-lactam and one β-lactamase inhibitor (meropenem and vaborbactam), siderophore cephalosporins (cefiderocol), new aminoglycosides (plazomicin), and agents in development for treating drug-resistant TB (pretomanid). It concludes with the advantages that can result from the use of these compounds, also mentioning other approaches, still poorly developed, for combating antibiotic resistance: Nanoparticles delivery systems for antibiotics.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Drugs for bad bugs: confronting the challenges of antibacterial discovery.

          The sequencing of the first complete bacterial genome in 1995 heralded a new era of hope for antibacterial drug discoverers, who now had the tools to search entire genomes for new antibacterial targets. Several companies, including GlaxoSmithKline, moved back into the antibacterials area and embraced a genomics-derived, target-based approach to screen for new classes of drugs with novel modes of action. Here, we share our experience of evaluating more than 300 genes and 70 high-throughput screening campaigns over a period of 7 years, and look at what we learned and how that has influenced GlaxoSmithKline's antibacterials strategy going forward.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA)

            A panel of experts was convened by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) to update the 2010 clinical practice guideline on Clostridium difficile infection (CDI) in adults. The update, which has incorporated recommendations for children (following the adult recommendations for epidemiology, diagnosis, and treatment), includes significant changes in the management of this infection and reflects the evolving controversy over best methods for diagnosis. Clostridium difficile remains the most important cause of healthcare-associated diarrhea and has become the most commonly identified cause of healthcare-associated infection in adults in the United States. Moreover, C. difficile has established itself as an important community pathogen. Although the prevalence of the epidemic and virulent ribotype 027 strain has declined markedly along with overall CDI rates in parts of Europe, it remains one of the most commonly identified strains in the United States where it causes a sizable minority of CDIs, especially healthcare-associated CDIs. This guideline updates recommendations regarding epidemiology, diagnosis, treatment, infection prevention, and environmental management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Challenges of antibacterial discovery.

              The discovery of novel small-molecule antibacterial drugs has been stalled for many years. The purpose of this review is to underscore and illustrate those scientific problems unique to the discovery and optimization of novel antibacterial agents that have adversely affected the output of the effort. The major challenges fall into two areas: (i) proper target selection, particularly the necessity of pursuing molecular targets that are not prone to rapid resistance development, and (ii) improvement of chemical libraries to overcome limitations of diversity, especially that which is necessary to overcome barriers to bacterial entry and proclivity to be effluxed, especially in Gram-negative organisms. Failure to address these problems has led to a great deal of misdirected effort.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                02 May 2021
                May 2021
                : 26
                : 9
                : 2671
                Affiliations
                Department of Drug Science, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; marco.terreni@ 123456unipv.it (M.T.); marina.taccani01@ 123456universitadipavia.it (M.T.)
                Author notes
                [* ]Correspondence: massimo.pregnolato@ 123456unipv.it ; Tel.: +39-0382-987583
                Author information
                https://orcid.org/0000-0002-8857-373X
                Article
                molecules-26-02671
                10.3390/molecules26092671
                8125338
                34063264
                8522af50-30b9-4c91-aea3-5c5026f9f8de
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 14 April 2021
                : 30 April 2021
                Categories
                Review

                antibiotic resistance,mdr bacterial strains,new antibiotics

                Comments

                Comment on this article

                scite_

                Similar content126

                Cited by74

                Most referenced authors846