34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasmodium cynomolgi infections in rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Plasmodium vivax infections in humans or in new world monkeys pose research challenges that necessitate the use of alternative model systems. Plasmodium cynomolgi is a closely related species that shares genetic and biological characteristics with P. vivax, including relapses. Here, the haematological dynamics and clinical presentation of sporozoite-initiated P. cynomolgi infections in Macaca mulatta (rhesus macaques) are evaluated over a 100-day period.

          Methods

          Five M. mulatta were inoculated with 2000 P. cynomolgi B strain sporozoites. Parasitological and haematological data were collected daily to study the clinical presentations of primary infections and relapses. Peripheral blood and bone marrow aspirates were collected at specific time points during infection for future and retrospective systems biology analyses.

          Results

          Patent infections were observed between days 10 and 12, and the acute, primary infection consisted of parasitaemias ranging from 269,962 to 1,214,842 parasites/µl (4.42–19.5 % parasitaemia). All animals presented with anaemia, ranging from moderate (7–10 g/dl) to severe (<7 g/dl), based on peripheral haemoglobin concentrations. Minimum haemoglobin levels coincided with the clearance of parasites and peripheral reticulocytosis was evident at this time. Mild thrombocytopaenia (<150,000 platelets/µl) was observed in all animals, but unlike haemoglobin, platelets were lowest whenever peripheral parasitaemia peaked. The animals’ conditions were classified as non-severe, severe or lethal (in one case) based upon their clinical presentation. The lethal phenotype presented uniquely with an exceptionally high parasitaemia (19.5 %) and lack of a modest reticulocyte release, which was observed in the other animals prior to acute manifestations. One or two relapses were observed in the four surviving animals, and these were characterized by significantly lower parasitaemias and minimal changes in clinical parameters compared to pre-infection values.

          Conclusions

          Rhesus macaque infections initiated by P. cynomolgi B strain sporozoites recapitulated pathology of human malaria, including anaemia and thrombocytopaenia, with inter-individual differences in disease severity. Importantly, this study provides an in-depth assessment of clinical and parasitological data, and shows that unlike the primary infections, the relapses did not cause clinical malaria. Notably, this body of research has provided experimental plans, large accessible datasets, and blood and bone marrow samples pertinent for ongoing and iterative systems biology investigations.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12936-016-1480-6) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary and biomedical insights from the rhesus macaque genome.

          The rhesus macaque (Macaca mulatta) is an abundant primate species that diverged from the ancestors of Homo sapiens about 25 million years ago. Because they are genetically and physiologically similar to humans, rhesus monkeys are the most widely used nonhuman primate in basic and applied biomedical research. We determined the genome sequence of an Indian-origin Macaca mulatta female and compared the data with chimpanzees and humans to reveal the structure of ancestral primate genomes and to identify evidence for positive selection and lineage-specific expansions and contractions of gene families. A comparison of sequences from individual animals was used to investigate their underlying genetic diversity. The complete description of the macaque genome blueprint enhances the utility of this animal model for biomedical research and improves our understanding of the basic biology of the species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vivax malaria: neglected and not benign.

            Plasmodium vivax threatens almost 40% of the world's population, resulting in 132-391 million clinical infections each year. Most of these cases originate from Southeast Asia and the Western Pacific, although a significant number also occurs in Africa and South America. Although often regarded as causing a benign and self-limiting infection, there is increasing evidence that the overall burden, economic impact, and severity of disease from P. vivax have been underestimated. Malaria control strategies have had limited success and are confounded by the lack of access to reliable diagnosis, emergence of multidrug resistant isolates, the parasite's ability to transmit early in the course of disease and relapse from dormant liver stages at varying time intervals after the initial infection. Progress in reducing the burden of disease will require improved access to reliable diagnosis and effective treatment of both blood-stage and latent parasites, and more detailed characterization of the epidemiology, morbidity, and economic impact of vivax malaria. Without these, vivax malaria will continue to be neglected by ministries of health, policy makers, researchers, and funding bodies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite.

              Plasmodium vivax is geographically the most widely distributed cause of malaria in people, with up to 2.5 billion people at risk and an estimated 80 million to 300 million clinical cases every year--including severe disease and death. Despite this large burden of disease, P vivax is overlooked and left in the shadow of the enormous problem caused by Plasmodium falciparum in sub-Saharan Africa. The technological advances enabling the sequencing of the P vivax genome and a recent call for worldwide malaria eradication have together placed new emphasis on the importance of addressing P vivax as a major public health problem. However, because of this parasite's biology, it is especially difficult to interrupt the transmission of P vivax, and experts agree that the available methods for preventing and treating infections with P vivax are inadequate. It is thus imperative that the development of new methods and strategies become a priority. Advancing the development of such methods needs renewed emphasis on understanding the biology, pathogenesis, and epidemiology of P vivax. This Review critically examines what is known about P vivax, focusing on identifying the crucial gaps that create obstacles to the elimination of this parasite in human populations.
                Bookmark

                Author and article information

                Contributors
                cjjoyne@emory.edu
                camoren@emory.edu
                evargas@emory.edu
                mlcabre@emory.edu
                jkissing@uga.edu
                wzb3@cdc.gov
                mary.galinski@emory.edu
                Journal
                Malar J
                Malar. J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                2 September 2016
                2 September 2016
                2016
                : 15
                : 1
                : 451
                Affiliations
                [1 ]International Center for Malaria Research, Education and Development, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329 USA
                [2 ]Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA USA
                [3 ]Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA USA
                [4 ]Department of Genetics, Institute of Bioinformatics, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA USA
                [5 ]Malaria Host–Pathogen Interaction Center, Atlanta, GA USA
                Article
                1480
                10.1186/s12936-016-1480-6
                5010691
                851ed71c-151a-40b0-b067-6662663dfae1
                © The Author(s) 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 June 2016
                : 10 August 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: HHSN272201200031C
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2016

                Infectious disease & Microbiology
                plasmodium vivax,host-pathogen interactions,malaria,non-human primates,rhesus,anaemia,thrombocytopaenia,systems biology,animal models

                Comments

                Comment on this article