15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effect of Fructose Overfeeding and Fish Oil Administration on Hepatic De Novo Lipogenesis and Insulin Sensitivity in Healthy Men

      , , , , ,
      Diabetes
      American Diabetes Association

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High-fructose diet stimulates hepatic de novo lipogenesis (DNL) and causes hypertriglyceridemia and insulin resistance in rodents. Fructose-induced insulin resistance may be secondary to alterations of lipid metabolism. In contrast, fish oil supplementation decreases triglycerides and may improve insulin resistance. Therefore, we studied the effect of high-fructose diet and fish oil on DNL and VLDL triglycerides and their impact on insulin resistance. Seven normal men were studied on four occasions: after fish oil (7.2 g/day) for 28 days; a 6-day high-fructose diet (corresponding to an extra 25% of total calories); fish oil plus high-fructose diet; and control conditions. Following each condition, fasting fractional DNL and endogenous glucose production (EGP) were evaluated using [1-13C]sodium acetate and 6,6-2H2 glucose and a two-step hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity. High-fructose diet significantly increased fasting glycemia (7 +/- 2%), triglycerides (79 +/- 22%), fractional DNL (sixfold), and EGP (14 +/- 3%, all P < 0.05). It also impaired insulin-induced suppression of adipose tissue lipolysis and EGP (P < 0.05) but had no effect on whole- body insulin-mediated glucose disposal. Fish oil significantly decreased triglycerides (37%, P < 0.05) after high-fructose diet compared with high-fructose diet without fish oil and tended to reduce DNL but had no other significant effect. In conclusion, high-fructose diet induced dyslipidemia and hepatic and adipose tissue insulin resistance. Fish oil reversed dyslipidemia but not insulin resistance.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.

          Obesity is a major epidemic, but its causes are still unclear. In this article, we investigate the relation between the intake of high-fructose corn syrup (HFCS) and the development of obesity. We analyzed food consumption patterns by using US Department of Agriculture food consumption tables from 1967 to 2000. The consumption of HFCS increased > 1000% between 1970 and 1990, far exceeding the changes in intake of any other food or food group. HFCS now represents > 40% of caloric sweeteners added to foods and beverages and is the sole caloric sweetener in soft drinks in the United States. Our most conservative estimate of the consumption of HFCS indicates a daily average of 132 kcal for all Americans aged > or = 2 y, and the top 20% of consumers of caloric sweeteners ingest 316 kcal from HFCS/d. The increased use of HFCS in the United States mirrors the rapid increase in obesity. The digestion, absorption, and metabolism of fructose differ from those of glucose. Hepatic metabolism of fructose favors de novo lipogenesis. In addition, unlike glucose, fructose does not stimulate insulin secretion or enhance leptin production. Because insulin and leptin act as key afferent signals in the regulation of food intake and body weight, this suggests that dietary fructose may contribute to increased energy intake and weight gain. Furthermore, calorically sweetened beverages may enhance caloric overconsumption. Thus, the increase in consumption of HFCS has a temporal relation to the epidemic of obesity, and the overconsumption of HFCS in calorically sweetened beverages may play a role in the epidemic of obesity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis.

            The liver provides for long-term energy needs of the body by converting excess carbohydrate into fat for storage. Insulin is one factor that promotes hepatic lipogenesis, but there is increasing evidence that glucose also contributes to the coordinated regulation of carbohydrate and fat metabolism in liver by mechanisms that are independent of insulin. In this study, we show that the transcription factor, carbohydrate response element-binding protein (ChREBP), is required both for basal and carbohydrate-induced expression of several liver enzymes essential for coordinated control of glucose metabolism, fatty acid, and the synthesis of fatty acids and triglycerides in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms.

              Current trends in health promotion emphasize the importance of reducing dietary fat intake. However, as dietary fat is reduced, the dietary carbohydrate content typically rises and the desired reduction in plasma cholesterol concentrations is frequently accompanied by an elevation of plasma triacylglycerol. We review the phenomenon of carbohydrate-induced hypertriacylglycerolemia, the health effects of which are among the most controversial and important issues in public health nutrition today. We first focus on how seminal observations made in the late 1950s and early 1960s became the basis for subsequent important research questions and areas of scientific study. The second focus of this paper is on the current knowledge of biological mechanisms that contribute to carbohydrate-induced hypertriacylglycerolemia. The clinical rationale behind mechanistic studies is this: if carbohydrate-induced hypertriacylglycerolemia shares a metabolic basis with endogenous hypertriacylglycerolemia (that observed in subjects consuming high-fat diets), then a similar atherogenic risk may be more likely than if the underlying metabolic mechanisms differ. The third focus of the paper is on both the positive metabolic changes that occur when high-carbohydrate diets are consumed and the potentially negative health effects of such diets. The review concludes with a summary of some important research questions that remain to be addressed. These issues include the level of dietary carbohydrate that induces carbohydrate-induced hypertriacylglycerolemia, whether the phenomenon is transient or can be avoided, whether de novo lipogenesis contributes to the phenomenon, and what magnitude of triacylglycerol elevation represents an increase in disease risk.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                June 27 2005
                July 01 2005
                June 27 2005
                July 01 2005
                : 54
                : 7
                : 1907-1913
                Article
                10.2337/diabetes.54.7.1907
                15983189
                850d7280-6f73-4b33-a386-829301e4eb92
                © 2005
                History

                Comments

                Comment on this article