9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The past decade has witnessed major breakthroughs in cancer immunotherapy. This development has been largely motivated by cancer cell evasion of immunological control and consequent tumor resistance to conventional therapies. Immunogenic cell death (ICD) is considered one of the most promising ways to achieve total tumor cell elimination. It activates the T-cell adaptive immune response and results in the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT). In this review, we first discuss the role of PDT based on several classes of photosensitizers, including porphyrins and non-porphyrins, and critically evaluate their potential role in ICD induction. We emphasize the emerging trend of ICD induction by PDT in combination with nanotechnology, which represents third-generation photosensitizers and involves targeted induction of ICD by PDT. However, PDT also has some limitations, including the reduced efficiency of ICD induction in the hypoxic tumor microenvironment. Therefore, we critically evaluate strategies for overcoming this limitation, which is essential for increasing PDT efficiency. In the final part, we suggest several areas for future research for personalized cancer immunotherapy, including strategies based on oxygen-boosted PDT and nanoparticles. In conclusion, the insights from the last several years increasingly support the idea that PDT is a powerful strategy for inducing ICD in experimental cancer therapy. However, most studies have focused on mouse models, but it is necessary to validate this strategy in clinical settings, which will be a challenging research area in the future.

          Related collections

          Most cited references156

          • Record: found
          • Abstract: found
          • Article: not found

          Immunogenic cell death in cancer and infectious disease

          Initiation of an adaptive immune response depends on the detection of both antigenic epitopes and adjuvant signals. Infectious pathogens and cancer cells often avoid immune detection by limiting the release of danger signals from dying cells. When is cell death immunogenic and what are the pathophysiological implications of this process?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The danger model: a renewed sense of self.

            For over 50 years immunologists have based their thoughts, experiments, and clinical treatments on the idea that the immune system functions by making a distinction between self and nonself. Although this paradigm has often served us well, years of detailed examination have revealed a number of inherent problems. This Viewpoint outlines a model of immunity based on the idea that the immune system is more concerned with entities that do damage than with those that are foreign.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunogenic cell death in cancer therapy.

              Depending on the initiating stimulus, cancer cell death can be immunogenic or nonimmunogenic. Immunogenic cell death (ICD) involves changes in the composition of the cell surface as well as the release of soluble mediators, occurring in a defined temporal sequence. Such signals operate on a series of receptors expressed by dendritic cells to stimulate the presentation of tumor antigens to T cells. We postulate that ICD constitutes a prominent pathway for the activation of the immune system against cancer, which in turn determines the long-term success of anticancer therapies. Hence, suboptimal regimens (failing to induce ICD), selective alterations in cancer cells (preventing the emission of immunogenic signals during ICD), or defects in immune effectors (abolishing the perception of ICD by the immune system) can all contribute to therapeutic failure. We surmise that ICD and its subversion by pathogens also play major roles in antiviral immune responses.
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2021
                11 January 2021
                : 9
                : 1
                : e001926
                Affiliations
                [1 ]departmentInstitute of Biology and Biomedicine , Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod, Russian Federation
                [2 ]Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University , Ghent, Belgium
                [3 ]Cancer Research Institute Ghent , Ghent, Belgium
                Author notes
                [Correspondence to ] Professor Dmitri V. Krysko; dmitri.krysko@ 123456ugent.be

                RA and TAM are joint first authors.

                MVV and DVK are joint senior authors.

                Author information
                http://orcid.org/0000-0002-9692-2047
                Article
                jitc-2020-001926
                10.1136/jitc-2020-001926
                7802670
                33431631
                84e7f161-af7c-4c8c-98a6-a0c86c2e9042
                © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 02 December 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100006769, Russian Science Foundation;
                Award ID: 18–15-00279
                Categories
                Review
                1506
                2521
                Custom metadata
                unlocked

                alarmins,immunogenicity,vaccine,adaptive immunity,immunotherapy,cytotoxicity,immunologic

                Comments

                Comment on this article