1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mode transition phenomena into an in-fiber Mach-Zehnder interferometer

      , , ,
      Optical Fiber Technology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          High temperature fiber sensor with high sensitivity based on core diameter mismatch.

          We report a simple fiber sensor for measurement of high temperature with high sensitivity. The sensing head is a multimode-single mode-multimode (MM-SM-MM) fiber configuration formed by splicing a section of uncoated single mode fiber (SMF) with two short sections of multimode fibers (MMF) whose core is composed of pure silica. Because of the mode-field mismatch at the splicing points of the SMF with 2 sections of MMFs, as well as index matching between the core of the MMF and the cladding of the SMF, optical power from the lead-in fiber can be partly coupled to the cladding modes of the SMF through the MMF. The cladding modes of the SMF then re-coupled to the lead-out fiber, in the same fashion. Due to the effective index difference between the core and cladding modes, an interference pattern in the transmission spectrum of the proposed device was obtained. The interference pattern was found to shift to the longer wavelength region with respect to temperature variation. The temperature sensor can measure temperature stably up to more than 900 degrees C with sensitivity of 0.088 nm/ degrees C.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber.

            We propose simple and compact methods for implementing all-fiber interferometers. The interference between the core and the cladding modes of a photonic crystal fiber (PCF) is utilized. To excite the cladding modes from the fundamental core mode of a PCF, a coupling point or region is formed by using two methods. One is fusion splicing two pieces of a PCF with a small lateral offset, and the other is partially collapsing the air-holes in a single piece of PCF. By making another coupling point at a different location along the fiber, the proposed all-PCF interferometer is implemented. The spectral response of the interferometer is investigated mainly in terms of its wavelength spectrum. The spatial frequency of the spectrum was proportional to the physical length of the interferometer and the difference between the modal group indices of involved waveguide modes. For the splicing type interferometer, only a single spatial frequency component was dominantly observed, while the collapsing type was associated with several components at a time. By analyzing the spatial frequency spectrum of the wavelength spectrum, the modal group index differences of the PCF were obtained from to . As potential applications of the all-PCF interferometer, strain sensing is experimentally demonstrated and ultra-high temperature sensing is proposed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mode transition in high refractive index coated long period gratings.

              In this work, the numerical and experimental investigation of the cladding modes re-organization in high refractive index (HRI) coated Long Period Gratings (LPGs) is reported. Moreover, the effects of the cladding modes re-organization on the sensitivity to the surrounding medium refractive index (SRI) have been outlined. When azimuthally symmetric nano-scale HRI coatings are deposited along LPGs devices, a significant modification of the cladding modes distribution occurs, depending on the layer features (refractive index and thickness) and on the SRI. In particular, if layer parameters are properly chosen, the transition of the lowest order cladding mode into an overlay mode occurs. As a consequence, a cladding modes re-organization can be observed leading to relevant improvements in the SRI sensitivity in terms of wavelength shift and amplitude variations of the LPGs attenuation bands.
                Bookmark

                Author and article information

                Journal
                Optical Fiber Technology
                Optical Fiber Technology
                10685200
                October 2023
                October 2023
                : 80
                : 103481
                Article
                10.1016/j.yofte.2023.103481
                84af8941-19f7-493b-a3ce-13db6c3fac3d
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article