26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Improving Hospital Survival and Reducing Brain Dysfunction at Seven California Community Hospitals: Implementing PAD Guidelines Via the ABCDEF Bundle in 6,064 Patients.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To track compliance by an interprofessional team with the Awakening and Breathing Coordination, Choice of drugs, Delirium monitoring and management, Early mobility, and Family engagement (ABCDEF) bundle in implementing the Pain, Agitation, and Delirium guidelines. The aim was to study the association between ABCDEF bundle compliance and outcomes including hospital survival and delirium-free and coma-free days in community hospitals.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial.

          Approaches to removal of sedation and mechanical ventilation for critically ill patients vary widely. Our aim was to assess a protocol that paired spontaneous awakening trials (SATs)-ie, daily interruption of sedatives-with spontaneous breathing trials (SBTs). In four tertiary-care hospitals, we randomly assigned 336 mechanically ventilated patients in intensive care to management with a daily SAT followed by an SBT (intervention group; n=168) or with sedation per usual care plus a daily SBT (control group; n=168). The primary endpoint was time breathing without assistance. Data were analysed by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00097630. One patient in the intervention group did not begin their assigned treatment protocol because of withdrawal of consent and thus was excluded from analyses and lost to follow-up. Seven patients in the control group discontinued their assigned protocol, and two of these patients were lost to follow-up. Patients in the intervention group spent more days breathing without assistance during the 28-day study period than did those in the control group (14.7 days vs 11.6 days; mean difference 3.1 days, 95% CI 0.7 to 5.6; p=0.02) and were discharged from intensive care (median time in intensive care 9.1 days vs 12.9 days; p=0.01) and the hospital earlier (median time in the hospital 14.9 days vs 19.2 days; p=0.04). More patients in the intervention group self-extubated than in the control group (16 patients vs six patients; 6.0% difference, 95% CI 0.6% to 11.8%; p=0.03), but the number of patients who required reintubation after self-extubation was similar (five patients vs three patients; 1.2% difference, 95% CI -5.2% to 2.5%; p=0.47), as were total reintubation rates (13.8%vs 12.5%; 1.3% difference, 95% CI -8.6% to 6.1%; p=0.73). At any instant during the year after enrolment, patients in the intervention group were less likely to die than were patients in the control group (HR 0.68, 95% CI 0.50 to 0.92; p=0.01). For every seven patients treated with the intervention, one life was saved (number needed to treat was 7.4, 95% CI 4.2 to 35.5). Our results suggest that a wake up and breathe protocol that pairs daily spontaneous awakening trials (ie, interruption of sedatives) with daily spontaneous breathing trials results in better outcomes for mechanically ventilated patients in intensive care than current standard approaches and should become routine practice.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials.

            Long-term sedation with midazolam or propofol in intensive care units (ICUs) has serious adverse effects. Dexmedetomidine, an α(2)-agonist available for ICU sedation, may reduce the duration of mechanical ventilation and enhance patient comfort. To determine the efficacy of dexmedetomidine vs midazolam or propofol (preferred usual care) in maintaining sedation; reducing duration of mechanical ventilation; and improving patients' interaction with nursing care. Two phase 3 multicenter, randomized, double-blind trials carried out from 2007 to 2010. The MIDEX trial compared midazolam with dexmedetomidine in ICUs of 44 centers in 9 European countries; the PRODEX trial compared propofol with dexmedetomidine in 31 centers in 6 European countries and 2 centers in Russia. Included were adult ICU patients receiving mechanical ventilation who needed light to moderate sedation for more than 24 hours (midazolam, n = 251, vs dexmedetomidine, n = 249; propofol, n = 247, vs dexmedetomidine, n = 251). Sedation with dexmedetomidine, midazolam, or propofol; daily sedation stops; and spontaneous breathing trials. For each trial, we tested whether dexmedetomidine was noninferior to control with respect to proportion of time at target sedation level (measured by Richmond Agitation-Sedation Scale) and superior to control with respect to duration of mechanical ventilation. Secondary end points were patients' ability to communicate pain (measured using a visual analogue scale [VAS]) and length of ICU stay. Time at target sedation was analyzed in per-protocol population (midazolam, n = 233, vs dexmedetomidine, n = 227; propofol, n = 214, vs dexmedetomidine, n = 223). Dexmedetomidine/midazolam ratio in time at target sedation was 1.07 (95% CI, 0.97-1.18) and dexmedetomidine/propofol, 1.00 (95% CI, 0.92-1.08). Median duration of mechanical ventilation appeared shorter with dexmedetomidine (123 hours [IQR, 67-337]) vs midazolam (164 hours [IQR, 92-380]; P = .03) but not with dexmedetomidine (97 hours [IQR, 45-257]) vs propofol (118 hours [IQR, 48-327]; P = .24). Patients' interaction (measured using VAS) was improved with dexmedetomidine (estimated score difference vs midazolam, 19.7 [95% CI, 15.2-24.2]; P < .001; and vs propofol, 11.2 [95% CI, 6.4-15.9]; P < .001). Length of ICU and hospital stay and mortality were similar. Dexmedetomidine vs midazolam patients had more hypotension (51/247 [20.6%] vs 29/250 [11.6%]; P = .007) and bradycardia (35/247 [14.2%] vs 13/250 [5.2%]; P < .001). Among ICU patients receiving prolonged mechanical ventilation, dexmedetomidine was not inferior to midazolam and propofol in maintaining light to moderate sedation. Dexmedetomidine reduced duration of mechanical ventilation compared with midazolam and improved patients' ability to communicate pain compared with midazolam and propofol. More adverse effects were associated with dexmedetomidine. clinicaltrials.gov Identifiers: NCT00481312, NCT00479661.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial.

              Standard treatment of critically ill patients undergoing mechanical ventilation is continuous sedation. Daily interruption of sedation has a beneficial effect, and in the general intesive care unit of Odense University Hospital, Denmark, standard practice is a protocol of no sedation. We aimed to establish whether duration of mechanical ventilation could be reduced with a protocol of no sedation versus daily interruption of sedation. Of 428 patients assessed for eligibility, we enrolled 140 critically ill adult patients who were undergoing mechanical ventilation and were expected to need ventilation for more than 24 h. Patients were randomly assigned in a 1:1 ratio (unblinded) to receive: no sedation (n=70 patients); or sedation (20 mg/mL propofol for 48 h, 1 mg/mL midazolam thereafter) with daily interruption until awake (n=70, control group). Both groups were treated with bolus doses of morphine (2.5 or 5 mg). The primary outcome was the number of days without mechanical ventilation in a 28-day period, and we also recorded the length of stay in the intensive care unit (from admission to 28 days) and in hospital (from admission to 90 days). Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00466492. 27 patients died or were successfully extubated within 48 h, and, as per our study design, were excluded from the study and statistical analysis. Patients receiving no sedation had significantly more days without ventilation (n=55; mean 13.8 days, SD 11.0) than did those receiving interrupted sedation (n=58; mean 9.6 days, SD 10.0; mean difference 4.2 days, 95% CI 0.3-8.1; p=0.0191). No sedation was also associated with a shorter stay in the intensive care unit (HR 1.86, 95% CI 1.05-3.23; p=0.0316), and, for the first 30 days studied, in hospital (3.57, 1.52-9.09; p=0.0039), than was interrupted sedation. No difference was recorded in the occurrences of accidental extubations, the need for CT or MRI brain scans, or ventilator-associated pneumonia. Agitated delirium was more frequent in the intervention group than in the control group (n=11, 20%vs n=4, 7%; p=0.0400). No sedation of critically ill patients receiving mechanical ventilation is associated with an increase in days without ventilation. A multicentre study is needed to establish whether this effect can be reproduced in other facilities. Danish Society of Anesthesiology and Intensive Care Medicine, the Fund of Danielsen, the Fund of Kirsten Jensa la Cour, and the Fund of Holger og Ruth Hess. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Crit. Care Med.
                Critical care medicine
                Ovid Technologies (Wolters Kluwer Health)
                1530-0293
                0090-3493
                Feb 2017
                : 45
                : 2
                Affiliations
                [1 ] 1Office of Patient Experience, Sutter Health Systems, Sacramento, CA. 2Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH. 3Department of Medicine, Pulmonary and Critical Care and Health Services Research Center, Vanderbilt University School of Medicine, Nashville, TN. 4The Tennessee Valley Veteran's Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, TN.
                Article
                10.1097/CCM.0000000000002149
                27861180
                84a99ffc-46d7-4ce6-8bb5-5b1a95c644cc
                History

                Comments

                Comment on this article