26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Case report of non-healing surgical wound treated with dehydrated human amniotic membrane

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Non-healing wounds can pose a medical challenge as in the case of vasculopathic venostasis resulting in a surgical ulcer. When traditional approaches to wound care fail, an amniotic patch (a dehydrated tissue allograft derived from human amnion) can function as a biologic scaffold to facilitate and enhance tissue regeneration and rehabilitation.

          Background

          Amniotic AlphaPatches contain concentrated molecules of PGE2, WNT4, and GDF-11 which have angiogenic, trophic, and anti-inflammatory effects on tissues that may be useful in enhancing wound healing.

          Aim—case report

          We present a case of a severe non-healing surgical wound in a 78-year-old male 17 days post right total knee arthroplasty. The full-thickness wound exhibited a mobile flap, measured 4 cm long × 3 cm wide, and showed undermining down to patellar tissue. We treated the wound conservatively for 6 weeks with no evidence of wound healing. Upon failure of the conservative treatment, two amniotic AlphaPatch (Amniotic Therapies, Dallas, TX, USA) were applied to the wound, and the wound healed completely in 10 weeks.

          Methods

          In the OR, the wound was irrigated with three liters of double antibiotic solution under pulse lavage. Two dry amniotic AlphaPatch (4 cm × 4 cm) were placed over the wound with Acticoat applied on top.

          Results

          At the two-week follow-up visit (following the incision and drainage of the wound dehiscence and application of the amniotic AlphaPatch), a central scab had formed centrally in the wound dehiscence area. At the four-week follow-up visit, the wound dehiscence area had completely scabbed over with no open areas left. At the eight-week follow-up visit, the scab had just fallen off, and the wound was healing well with immature skin representing the size of a penny. At the ten-week follow-up visit, the wound was completely healed.

          Discussion/conclusion

          Sterile, dehydrated amniotic tissue AlphaPatches (containing trophic factors known to enhance wound healing) have proven effective in completely healing an otherwise non-healing wound in a 78-year-old male who failed six weeks of conservative wound care treatment.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Concise review: role of mesenchymal stem cells in wound repair.

          Wound healing requires a coordinated interplay among cells, growth factors, and extracellular matrix proteins. Central to this process is the endogenous mesenchymal stem cell (MSC), which coordinates the repair response by recruiting other host cells and secreting growth factors and matrix proteins. MSCs are self-renewing multipotent stem cells that can differentiate into various lineages of mesenchymal origin such as bone, cartilage, tendon, and fat. In addition to multilineage differentiation capacity, MSCs regulate immune response and inflammation and possess powerful tissue protective and reparative mechanisms, making these cells attractive for treatment of different diseases. The beneficial effect of exogenous MSCs on wound healing was observed in a variety of animal models and in reported clinical cases. Specifically, they have been successfully used to treat chronic wounds and stimulate stalled healing processes. Recent studies revealed that human placental membranes are a rich source of MSCs for tissue regeneration and repair. This review provides a concise summary of current knowledge of biological properties of MSCs and describes the use of MSCs for wound healing. In particular, the scope of this review focuses on the role MSCs have in each phase of the wound-healing process. In addition, characterization of MSCs containing skin substitutes is described, demonstrating the presence of key growth factors and cytokines uniquely suited to aid in wound repair.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in skin grafting and treatment of cutaneous wounds.

            The ability of the skin to repair itself after injury is vital to human survival and is disrupted in a spectrum of disorders. The process of cutaneous wound healing is complex, requiring a coordinated response by immune cells, hematopoietic cells, and resident cells of the skin. We review the classic paradigms of wound healing and evaluate how recent discoveries have enriched our understanding of this process. We evaluate current and experimental approaches to treating cutaneous wounds, with an emphasis on cell-based therapies and skin transplantation. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A review of therapeutic effects of mesenchymal stem cell secretions and induction of secretory modification by different culture methods

              The mesenchymal stem cell (MSC) is being broadly studied in clinical trials. Contrary to the early paradigm of cell replacement and differentiation as a therapeutic mechanism of action, evidence is mounting that the secretions of the cells are responsible for their therapeutic effects. These secretions include molecules and extracellular vesicles that have both local and distant effects. This review summarizes the up- and down-regulation of MSC anti-inflammatory, immune modulating, anti-tumor, and regenerative secretions resulting from different stimuli including: a) hypoxia, which increases the production of growth factors and anti-inflammatory molecules; b) pro-inflammatory stimuli that induce the secretion of immune modulating and anti-inflammatory factors; and c) 3 dimensional growth which up regulates the production of anti-cancer factors and anti-inflammatory molecules compared to monolayer culture. Finally we review in detail the most important factors present in conditioned medium of MSC that can be considered protagonists of MSC physiological effects including HGF, TGF-b, VEGF, TSG-6, PGE2 and galectins 1, and 9. We conclude that there is potential for the development of acellular therapeutic interventions for autoimmune, inflammatory, and malignant diseases and tissue regeneration from cellular secretions derived from MSCs cultured under the appropriate conditions.
                Bookmark

                Author and article information

                Contributors
                nhriordan@gmail.com
                ben@lonestarsurgicalgroup.com
                troy@rmiclinic.com
                drmckenna@rmiclinic.com
                Journal
                J Transl Med
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                24 July 2015
                24 July 2015
                2015
                : 13
                : 242
                Affiliations
                [ ]MediStem Panama Inc., City of Knowledge, Panama City, Republic of Panama
                [ ]Riordan-McKenna Institute, 801 E. Southlake Blvd., Southlake, TX 76092 USA
                Article
                608
                10.1186/s12967-015-0608-8
                4513638
                26205894
                849f2f71-2569-4c93-8470-dae89b899857
                © Riordan et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 May 2015
                : 16 July 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Medicine
                msc,amniotic patches,amnion,amniotic tissue,cell therapy,wound healing
                Medicine
                msc, amniotic patches, amnion, amniotic tissue, cell therapy, wound healing

                Comments

                Comment on this article