18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Optical temperature sensing of rare-earth ion doped phosphors

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Optical temperature sensing is a promising method to achieve the contactless temperature measurement and large-scale imaging. The current status of optical thermometry of rare-earth ions doped phosphors is reviewed in detail.

          Accurate and reliable temperature measurement of many special inaccessible objects is a challenging task. Optical temperature sensing is a promising method to achieve it. The current status of optical thermometry of rare-earth ion doped phosphors is reviewed in detail. Based on the mechanisms of optical temperature sensing of different phosphors, temperature dependent luminescence spectra, the fluorescence intensity ratio technique in the data fitting process, and errors of the energy difference between thermally coupled levels, we describe the recent developments in the use of optical thermometry materials. The most important results obtained in each case are summarized, and the main challenges that we need to overcome are discussed. Research in the field of phosphor sensors has shown that they have significant advantages compared to conventional sensors in terms of their properties like greater sensitivity, freedom from electromagnetic interference, long path monitoring, and independence of compatibility with electronic devices.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals.

          Lanthanide ions exhibit unique luminescent properties, including the ability to convert near infrared long-wavelength excitation radiation into shorter visible wavelengths through a process known as photon upconversion. In recent years lanthanide-doped upconversion nanocrystals have been developed as a new class of luminescent optical labels that have become promising alternatives to organic fluorophores and quantum dots for applications in biological assays and medical imaging. These techniques offer low autofluorescence background, large anti-Stokes shifts, sharp emission bandwidths, high resistance to photobleaching, and high penetration depth and temporal resolution. Such techniques also show potential for improving the selectivity and sensitivity of conventional methods. They also pave the way for high throughput screening and miniaturization. This tutorial review focuses on the recent development of various synthetic approaches and possibilities for chemical tuning of upconversion properties, as well as giving an overview of biological applications of these luminescent nanocrystals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermometry at the nanoscale.

            Non-invasive precise thermometers working at the nanoscale with high spatial resolution, where the conventional methods are ineffective, have emerged over the last couple of years as a very active field of research. This has been strongly stimulated by the numerous challenging requests arising from nanotechnology and biomedicine. This critical review offers a general overview of recent examples of luminescent and non-luminescent thermometers working at nanometric scale. Luminescent thermometers encompass organic dyes, QDs and Ln(3+)ions as thermal probes, as well as more complex thermometric systems formed by polymer and organic-inorganic hybrid matrices encapsulating these emitting centres. Non-luminescent thermometers comprise of scanning thermal microscopy, nanolithography thermometry, carbon nanotube thermometry and biomaterials thermometry. Emphasis has been put on ratiometric examples reporting spatial resolution lower than 1 micron, as, for instance, intracellular thermometers based on organic dyes, thermoresponsive polymers, mesoporous silica NPs, QDs, and Ln(3+)-based up-converting NPs and β-diketonate complexes. Finally, we discuss the challenges and opportunities in the development for highly sensitive ratiometric thermometers operating at the physiological temperature range with submicron spatial resolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temperature sensing using fluorescent nanothermometers.

              Acquiring the temperature of a single living cell is not a trivial task. In this paper, we devise a novel nanothermometer, capable of accurately determining the temperature of solutions as well as biological systems such as HeLa cancer cells. The nanothermometer is based on the temperature-sensitive fluorescence of NaYF(4):Er(3+),Yb(3+) nanoparticles, where the intensity ratio of the green fluorescence bands of the Er(3+) dopant ions ((2)H(11/2) --> (4)I(15/2) and (4)S(3/2) --> (4)I(15/2)) changes with temperature. The nanothermometers were first used to obtain thermal profiles created when heating a colloidal solution of NaYF(4):Er(3+),Yb(3+) nanoparticles in water using a pump-probe experiment. Following incubation of the nanoparticles with HeLa cervical cancer cells and their subsequent uptake, the fluorescent nanothermometers measured the internal temperature of the living cell from 25 degrees C to its thermally induced death at 45 degrees C.
                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2015
                2015
                : 5
                : 105
                : 86219-86236
                Article
                10.1039/C5RA16986K
                8494e82f-05f1-452e-8c6c-f04fe4a9cd60
                © 2015
                History

                Comments

                Comment on this article