0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tuning the Surface Energy of Hole Transport Layers Based on Carbazole Self‐Assembled Monolayers for Highly Efficient Sn/Pb Perovskite Solar Cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, carbazole‐based self‐assembled monolayers (SAMs) have been utilized as hole transport layers (HTLs) in perovskite solar cells. However, their application in Sn or mixed Sn/Pb perovskite solar cells has been hindered by the poor wettability of the perovskite precursor solution on the carbazole surface. Here a self‐assembled bilayer (SAB) comprising a covalent monolayer (Br‐2PACz) and a noncovalent wetting layer (4CzNH 3I) as the HTL in a Cs 0.25FA 0.75Sn 0.5Pb 0.5I 3 perovskite solar cell is proposed. It is demonstrated that the wetting layer completely solves the problem due to the higher polarity of the surface and, furthermore, the ammonium groups help in the passivation of trap states at the buried SAB/perovskite interface. The introduction of the SAB enhances the device reproducibility with an average efficiency of 18.98 ± 0.28% (19.45% for the best device), compared to 11.54 ± 9.36% (19.34% for the best device) for the SAM‐only devices. Furthermore, the improved perovskite processability on the SAB helps to increase the reproducibility of larger size device, where, a 12.5% efficiency for a 0.8 cm 2 active area device compared to 0.68% for the best SAM‐based solar cell is demonstrated. Finally, the device's operational stability is also improved to 358 hours (T 80%), compared to 220 hours for the SAM‐based solar cell.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

          Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Toxicity of organometal halide perovskite solar cells.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                August 13 2023
                Affiliations
                [1 ] Photophysics and Optoelectronics Group Zernike Institute for Advanced Materials University of Groningen Groningen 9747 AG Netherlands
                [2 ] Department of Chemistry Ångström Laboratory Physical Chemistry Uppsala University Uppsala 751 20 Sweden
                [3 ] Stratingh Institute for Chemistry Zernike Institute for Advanced Materials University of Groningen Groningen 9747 AG Netherlands
                [4 ] Department of Chemistry North Carolina State University Raleigh 27695 USA
                Article
                10.1002/adfm.202306571
                8476bb38-8b53-465c-b6f1-27a1f8723c4a
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article