23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SnugDock: Paratope Structural Optimization during Antibody-Antigen Docking Compensates for Errors in Antibody Homology Models

      research-article
      1 , 1 , 2 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High resolution structures of antibody-antigen complexes are useful for analyzing the binding interface and to make rational choices for antibody engineering. When a crystallographic structure of a complex is unavailable, the structure must be predicted using computational tools. In this work, we illustrate a novel approach, named SnugDock, to predict high-resolution antibody-antigen complex structures by simultaneously structurally optimizing the antibody-antigen rigid-body positions, the relative orientation of the antibody light and heavy chains, and the conformations of the six complementarity determining region loops. This approach is especially useful when the crystal structure of the antibody is not available, requiring allowances for inaccuracies in an antibody homology model which would otherwise frustrate rigid-backbone docking predictions. Local docking using SnugDock with the lowest-energy RosettaAntibody homology model produced more accurate predictions than standard rigid-body docking. SnugDock can be combined with ensemble docking to mimic conformer selection and induced fit resulting in increased sampling of diverse antibody conformations. The combined algorithm produced four medium (Critical Assessment of PRediction of Interactions-CAPRI rating) and seven acceptable lowest-interface-energy predictions in a test set of fifteen complexes. Structural analysis shows that diverse paratope conformations are sampled, but docked paratope backbones are not necessarily closer to the crystal structure conformations than the starting homology models. The accuracy of SnugDock predictions suggests a new genre of general docking algorithms with flexible binding interfaces targeted towards making homology models useful for further high-resolution predictions.

          Author Summary

          Antibodies are proteins that are key elements of the immune system and increasingly used as drugs. Antibodies bind tightly and specifically to antigens to block their activity or to mark them for destruction. Three-dimensional structures of the antibody-antigen complexes are useful for understanding their mechanism and for designing improved antibody drugs. Experimental determination of structures is laborious and not always possible, so we have developed tools to predict structures of antibody-antigen complexes computationally. Computer-predicted models of antibodies, or homology models, typically have errors which can frustrate algorithms for prediction of protein-protein interfaces (docking), and result in incorrect predictions. Here, we have created and tested a new docking algorithm which incorporates flexibility to overcome structural errors in the antibody structural model. The algorithm allows both intramolecular and interfacial flexibility in the antibody during docking, resulting in improved accuracy approaching that when using experimentally determined antibody structures. Structural analysis of the predicted binding region of the complex will enable the protein engineer to make rational choices for better antibody drug designs.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: not found
          • Article: not found

          Protein structure prediction using Rosetta.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toward high-resolution de novo structure prediction for small proteins.

            The prediction of protein structure from amino acid sequence is a grand challenge of computational molecular biology. By using a combination of improved low- and high-resolution conformational sampling methods, improved atomically detailed potential functions that capture the jigsaw puzzle-like packing of protein cores, and high-performance computing, high-resolution structure prediction (<1.5 angstroms) can be achieved for small protein domains (<85 residues). The primary bottleneck to consistent high-resolution prediction appears to be conformational sampling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Standard conformations for the canonical structures of immunoglobulins.

              A comparative analysis of the main-chain conformation of the L1, L2, L3, H1 and H2 hypervariable regions in 17 immunoglobulin structures that have been accurately determined at high resolution is described. This involves 79 hypervariable regions in all. We also analysed a part of the H3 region in 12 of the 15 VH domains considered here. On the basis of the residues at key sites the 79 hypervariable regions can be assigned to one of 18 different canonical structures. We show that 71 of these hypervariable regions have a conformation that is very close to what can be defined as a "standard" conformation of each canonical structure. These standard conformations are described in detail. The other eight hypervariable regions have small deviations from the standard conformations that, in six cases, involve only the rotation of a single peptide group. Most H3 hypervariable regions have the same conformation in the part that is close to the framework and the details of this conformation are also described here. Copyright 1997 Academic Press Limited
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                January 2010
                January 2010
                22 January 2010
                : 6
                : 1
                : e1000644
                Affiliations
                [1 ]Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
                [2 ]Program in Molecular & Computational Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
                University of California, San Francisco, United States of America
                Author notes

                Conceived and designed the experiments: AS JJG. Performed the experiments: AS. Analyzed the data: AS JJG. Contributed reagents/materials/analysis tools: JJG. Wrote the paper: AS JJG.

                Article
                09-PLCB-RA-1179R2
                10.1371/journal.pcbi.1000644
                2800046
                20098500
                8443febb-1c86-4817-a7a4-02261b5204d2
                Sircar, Gray. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 October 2009
                : 15 December 2009
                Page count
                Pages: 13
                Categories
                Research Article
                Biochemistry/Bioinformatics
                Biochemistry/Drug Discovery
                Biochemistry/Protein Folding
                Biochemistry/Theory and Simulation
                Biophysics/Biomacromolecule-Ligand Interactions
                Biophysics/Protein Folding
                Biophysics/Theory and Simulation
                Computational Biology/Protein Structure Prediction
                Immunology/Antigen Processing and Recognition
                Molecular Biology/Bioinformatics
                Pharmacology/Drug Development

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article