Search for authorsSearch for similar articles
34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          NF-kappaB in cancer: from innocent bystander to major culprit.

          Nuclear factor of kappaB (NF-kappaB) is a sequence-specific transcription factor that is known to be involved in the inflammatory and innate immune responses. Although the importance of NF-KB in immunity is undisputed, recent evidence indicates that NF-kappaB and the signalling pathways that are involved in its activation are also important for tumour development. NF-kappaB should therefore receive as much attention from cancer researchers as it has already from immunologists.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial-mesenchymal transitions in development and pathologies.

            The epithelial-mesenchymal transition (EMT) is a fundamental process governing morphogenesis in multicellular organisms. This process is also reactivated in a variety of diseases including fibrosis and in the progression of carcinoma. The molecular mechanisms of EMT were primarily studied in epithelial cell lines, leading to the discovery of transduction pathways involved in the loss of epithelial cell polarity and the acquisition of a variety of mesenchymal phenotypic traits. Similar mechanisms have also been uncovered in vivo in different species, showing that EMT is controlled by remarkably well-conserved mechanisms. Current studies further emphasise the critical importance of EMT and provide a better molecular and functional definition of mesenchymal cells and how they emerged >500 million years ago as a key event in evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis

              Multistep carcinogenesis involves more than six discrete events also important in normal development and cell behavior. Of these, local invasion and metastasis cause most cancer deaths but are the least well understood molecularly. We employed a combined in vitro/in vivo carcinogenesis model, that is, polarized Ha-Ras–transformed mammary epithelial cells (EpRas), to dissect the role of Ras downstream signaling pathways in epithelial cell plasticity, tumorigenesis, and metastasis. Ha-Ras cooperates with transforming growth factor β (TGFβ) to cause epithelial mesenchymal transition (EMT) characterized by spindle-like cell morphology, loss of epithelial markers, and induction of mesenchymal markers. EMT requires continuous TGFβ receptor (TGFβ-R) and oncogenic Ras signaling and is stabilized by autocrine TGFβ production. In contrast, fibroblast growth factors, hepatocyte growth factor/scatter factor, or TGFβ alone induce scattering, a spindle-like cell phenotype fully reversible after factor withdrawal, which does not involve sustained marker changes. Using specific inhibitors and effector-specific Ras mutants, we show that a hyperactive Raf/mitogen-activated protein kinase (MAPK) is required for EMT, whereas activation of phosphatidylinositol 3-kinase (PI3K) causes scattering and protects from TGFβ-induced apoptosis. Hyperactivation of the PI3K pathway or the Raf/MAPK pathway are sufficient for tumorigenesis, whereas EMT in vivo and metastasis required a hyperactive Raf/MAPK pathway. Thus, EMT seems to be a close in vitro correlate of metastasis, both requiring synergism between TGFβ-R and Raf/MAPK signaling.
                Bookmark

                Author and article information

                Journal
                Journal of Clinical Investigation
                J. Clin. Invest.
                American Society for Clinical Investigation
                0021-9738
                August 16 2004
                August 16 2004
                : 114
                : 4
                : 569-581
                Article
                10.1172/JCI200421358
                15314694
                843f6802-6640-4ea6-8642-018e623287c0
                © 2004
                History

                Comments

                Comment on this article