Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Diversification of Populus FLOWERING LOCUS D-LIKE3 Transcription Factor and Two Paralogs in Shoot Ontogeny, Flowering, and Vegetative Phenology

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both the evolution of tree taxa and whole-genome duplication (WGD) have occurred many times during angiosperm evolution. Transcription factors are preferentially retained following WGD suggesting that functional divergence of duplicates could contribute to traits distinctive to the tree growth habit. We used gain- and loss-of-function transgenics, photoperiod treatments, and circannual expression studies in adult trees to study the diversification of three Populus FLOWERING LOCUS D-LIKE (FDL) genes encoding bZIP transcription factors. Expression patterns and transgenic studies indicate that FDL2.2 promotes flowering and that FDL1 and FDL3 function in different vegetative phenophases. Study of dominant repressor FDL versions indicates that the FDL proteins are partially equivalent in their ability to alter shoot growth. Like its paralogs, FDL3 overexpression delays short day-induced growth cessation, but also induces distinct heterochronic shifts in shoot development—more rapid phytomer initiation and coordinated delay in both leaf expansion and the transition to secondary growth in long days, but not in short days. Our results indicate that both regulatory and protein coding sequence variation contributed to diversification of FDL paralogs that has led to a degree of specialization in multiple developmental processes important for trees and their local adaptation.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.

            We present the latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine. In this major upgrade, Mega has been optimized for use on 64-bit computing systems for analyzing larger datasets. Researchers can now explore and analyze tens of thousands of sequences in Mega The new version also provides an advanced wizard for building timetrees and includes a new functionality to automatically predict gene duplication events in gene family trees. The 64-bit Mega is made available in two interfaces: graphical and command line. The graphical user interface (GUI) is a native Microsoft Windows application that can also be used on Mac OS X. The command line Mega is available as native applications for Windows, Linux, and Mac OS X. They are intended for use in high-throughput and scripted analysis. Both versions are available from www.megasoftware.net free of charge.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              MUSCLE: a multiple sequence alignment method with reduced time and space complexity

              Background In a previous paper, we introduced MUSCLE, a new program for creating multiple alignments of protein sequences, giving a brief summary of the algorithm and showing MUSCLE to achieve the highest scores reported to date on four alignment accuracy benchmarks. Here we present a more complete discussion of the algorithm, describing several previously unpublished techniques that improve biological accuracy and / or computational complexity. We introduce a new option, MUSCLE-fast, designed for high-throughput applications. We also describe a new protocol for evaluating objective functions that align two profiles. Results We compare the speed and accuracy of MUSCLE with CLUSTALW, Progressive POA and the MAFFT script FFTNS1, the fastest previously published program known to the author. Accuracy is measured using four benchmarks: BAliBASE, PREFAB, SABmark and SMART. We test three variants that offer highest accuracy (MUSCLE with default settings), highest speed (MUSCLE-fast), and a carefully chosen compromise between the two (MUSCLE-prog). We find MUSCLE-fast to be the fastest algorithm on all test sets, achieving average alignment accuracy similar to CLUSTALW in times that are typically two to three orders of magnitude less. MUSCLE-fast is able to align 1,000 sequences of average length 282 in 21 seconds on a current desktop computer. Conclusions MUSCLE offers a range of options that provide improved speed and / or alignment accuracy compared with currently available programs. MUSCLE is freely available at .
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                03 February 2022
                2022
                : 13
                : 805101
                Affiliations
                [1] 1Department of Forest Resources and Environmental Conservation, Virginia Tech , Blacksburg, VA, United States
                [2] 2Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University , Starkville, MS, United States
                [3] 3Department of Forest Ecosystems and Society, Oregon State University , Corvallis, OR, United States
                Author notes

                Edited by: Hisayo Yamane, Kyoto University, Japan

                Reviewed by: Ove Nilsson, Umeå University, Sweden; Erika Varkonyi-Gasic, The New Zealand Institute for Plant and Food Research Ltd., New Zealand; Nobuhiro Kotoda, Saga University, Japan

                *Correspondence: Amy M. Brunner, abrunner@ 123456vt.edu

                This article was submitted to Plant Development and EvoDevo, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2022.805101
                8850916
                35185983
                84368ef6-4369-474a-ac2b-dd8c8e8bedb5
                Copyright © 2022 Sheng, Hsu, Ma and Brunner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 October 2021
                : 10 January 2022
                Page count
                Figures: 8, Tables: 0, Equations: 0, References: 71, Pages: 16, Words: 10746
                Funding
                Funded by: US Department of Energy Office of Science
                Award ID: DE-SC0012574
                Funded by: USDA National Institute of Food and Agriculture
                Award ID: 1025004
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                flowering locus d,ft,fruitfull,gene duplication,heterochrony,leaf development,phenology,secondary growth

                Comments

                Comment on this article