14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Snail1 expression in colorectal cancer and its correlation with clinical and pathological parameters

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Snail1 is a transcription regulator of E-cadherin. The loss of E-cadherin seems to be a crucial step in the process of Epithelial-mesenchymal transition (EMT). EMT initiates invasion and proliferation in many tumours. Overexpression of Snail1 is known to be associated with poor outcome in several solid tumours. The aim of this study was to analyse its expression profile and prognostic significance in colorectal cancer.

          Methods

          Tissue microarrays (TMA) containing paraffin-embedded primary colorectal cancer (CRC) tissue samples from 251 patients were used in this study. The expression of Snail1 and E-cadherin was assessed by immunohistochemistry in different tumour compartments, corresponding lymph node metastases and normal colonic mucosa. Intensity of staining was classified according to the Remmele score (standardized scoring system) as well as the semiquantitative score established by Blechschmidt et al.

          Results

          Snail1 expression was observed in 76% of the CRC. Loss of E-cadherin was noted in 87% of the CRC. Snail1 positive tumours were significantly correlated with Snail1 positive lymph node metastases (p=0.03). There was no significant correlation between loss of E-cadherin and Snail1 expression, or between N-stage or grading and Snail1 expression. Kaplan-Meier survival analysis identified no prognostic impact of Snail1 expression on overall survival.

          Conclusion

          Snail1 expression was detectable in most of the CRC but showed no significant association with E-cadherin loss, clinical pathological characteristics or overall survival. The observed loss of E-cadherin could be explained by effects of other important EMT pathways, such as the Wnt-signalling cascade.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tissue microarrays for high-throughput molecular profiling of tumor specimens.

            Many genes and signalling pathways controlling cell proliferation, death and differentiation, as well as genomic integrity, are involved in cancer development. New techniques, such as serial analysis of gene expression and cDNA microarrays, have enabled measurement of the expression of thousands of genes in a single experiment, revealing many new, potentially important cancer genes. These genome screening tools can comprehensively survey one tumor at a time; however, analysis of hundreds of specimens from patients in different stages of disease is needed to establish the diagnostic, prognostic and therapeutic importance of each of the emerging cancer gene candidates. Here we have developed an array-based high-throughput technique that facilitates gene expression and copy number surveys of very large numbers of tumors. As many as 1000 cylindrical tissue biopsies from individual tumors can be distributed in a single tumor tissue microarray. Sections of the microarray provide targets for parallel in situ detection of DNA, RNA and protein targets in each specimen on the array, and consecutive sections allow the rapid analysis of hundreds of molecular markers in the same set of specimens. Our detection of six gene amplifications as well as p53 and estrogen receptor expression in breast cancer demonstrates the power of this technique for defining new subgroups of tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The cell-cell adhesion molecule E-cadherin.

              This review is dedicated to E-cadherin, a calcium-dependent cell-cell adhesion molecule with pivotal roles in epithelial cell behavior, tissue formation, and suppression of cancer. As founder member of the cadherin superfamily, it has been extensively investigated. We summarize the structure and regulation of the E-cadherin gene and transcript. Models for E-cadherin-catenin complexes and cell junctions are presented. The structure of the E-cadherin protein is discussed in view of the diverse functions of this remarkable protein. Homophilic and heterophilic adhesion are compared, including the role of E-cadherin as a receptor for pathogens. The complex post-translational processing of E-cadherin is reviewed, as well as the many signaling activities. The role of E-cadherin in embryonic development and morphogenesis is discussed for several animal models. Finally, we review the multiple mechanisms that disrupt E-cadherin function in cancer: inactivating somatic and germline mutations, epigenetic silencing by DNA methylation and epithelial to mesenchymal transition-inducing transcription factors, and dysregulated protein processing.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2013
                22 March 2013
                : 13
                : 145
                Affiliations
                [1 ]Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Düsseldorf, 40225, Germany
                [2 ]Institute for Pathology, University Hospital Düsseldorf, Düsseldorf, Germany
                [3 ]Institute for Pharmacology, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
                Article
                1471-2407-13-145
                10.1186/1471-2407-13-145
                3617032
                23522088
                84334f13-e473-48ea-9e44-c77b0b165a30
                Copyright ©2013 Kroepil et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 September 2012
                : 14 March 2013
                Categories
                Research Article

                Oncology & Radiotherapy
                colorectal carcinoma,e-cadherin,emt,prognostic factor,snail1
                Oncology & Radiotherapy
                colorectal carcinoma, e-cadherin, emt, prognostic factor, snail1

                Comments

                Comment on this article