3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic Changes of the Gut Microbiota in Preterm Infants With Different Gestational Age

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The gut microbiota plays a key role in the pathogenesis of diseases affecting preterm infants and gestational age is one of the important factors which affect the gut microbiota of infants. To determine the characteristics of the gut microbiota in preterm infants of different gestational ages from birth to 1 year after birth, we collected 622 fecal samples from neonates of different gestational ages at different time points after birth. According to the gestational ages, the samples were divided into four groups, extremely preterm, very preterm, moderate to late preterm, and term group. Meconium and fecal samples at day 14, 28, 120, and 365 after birth were collected. 16S rRNA sequencing was performed and the composition and structure of the gut microbiota in preterm infants of different gestational age was compared with that of term infants. In our study, alpha diversity of meconium in extremely preterm group was higher than very preterm group, moderate to late preterm group and term group and alpha diversity of meconium in preterm group was decreased with increasing of gestational age. At day 14 to day 120 after birth, alpha diversity of term and moderate to late preterm group were significantly higher than other two preterm groups. However, moderate to late preterm group owned the highest alpha diversity which was higher than term group at day 365 after birth. Besides, the results shown the duration of opportunistic pathogen such as Klebsiella and Enterococcus which dominant colonization was different in different gestational age groups. As well as the probiotics, such as Bifidobacterium, which abundance enriched at different time point in different gestational age groups. We profiled the features of dynamic changes of gut microbiome from different gestational ages infants. The results of our research provide new insights for individualized interventions of specific microbes of preterm infants with different gestational ages at different time points after birth.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

          The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (> or = 95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Ribosomal Database Project: improved alignments and new tools for rRNA analysis

            The Ribosomal Database Project (RDP) provides researchers with quality-controlled bacterial and archaeal small subunit rRNA alignments and analysis tools. An improved alignment strategy uses the Infernal secondary structure aware aligner to provide a more consistent higher quality alignment and faster processing of user sequences. Substantial new analysis features include a new Pyrosequencing Pipeline that provides tools to support analysis of ultra high-throughput rRNA sequencing data. This pipeline offers a collection of tools that automate the data processing and simplify the computationally intensive analysis of large sequencing libraries. In addition, a new Taxomatic visualization tool allows rapid visualization of taxonomic inconsistencies and suggests corrections, and a new class Assignment Generator provides instructors with a lesson plan and individualized teaching materials. Details about RDP data and analytical functions can be found at http://rdp.cme.msu.edu/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Stunted microbiota and opportunistic pathogen colonisation in caesarean section birth

              Immediately after birth, newborn babies experience rapid colonisation by microorganisms from their mothers and the surrounding environment 1 . Diseases in childhood and later in life are potentially mediated through perturbation of the infant gut microbiota colonisations 2 . However, the impact of modern clinical practices, such as caesarean section delivery and antibiotic usage, on the earliest stages of gut microbiota acquisition and development during the neonatal period (≤1 month) remains controversial 3,4 . Here we report disrupted maternal transmission of Bacteroides strains and high-level colonisation by healthcare-associated opportunistic pathogens, including Enterococcus, Enterobacter and Klebsiella species, in babies delivered by caesarean section (C-section), and to a lesser extent, in those delivered vaginally with maternal antibiotic prophylaxis or not breastfed during the neonatal period. Applying longitudinal sampling and whole-genome shotgun metagenomic analysis on 1,679 gut microbiotas of 771 full term, UK-hospital born babies and mothers, we demonstrate that the mode of delivery is a significant factor impacting gut microbiota composition during the neonatal period that persists into infancy (1 month - 1 year). Matched large-scale culturing and whole-genome sequencing (WGS) of over 800 bacterial strains cultured from these babies identified virulence factors and clinically relevant antimicrobial resistance (AMR) in opportunistic pathogens that may predispose to opportunistic infections. Our findings highlight the critical early roles of the local environment (i.e. mother and hospital) in establishing the gut microbiota in very early life, and identifies colonisation with AMR carrying, healthcare-associated opportunistic pathogens as a previously unappreciated risk factor.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                30 June 2022
                2022
                : 13
                : 923273
                Affiliations
                [1] 1Department of Pediatrics, Peking University Third Hospital , Beijing, China
                [2] 2School of Public Health, Peking University Health Science Center , Beijing, China
                [3] 3National Engineering Center of Dairy for Maternal and Child Health, Beijing Sanyuan Foods Co., Ltd. , Beijing, China
                Author notes

                Edited by: George Grant, University of Aberdeen, United Kingdom

                Reviewed by: Jennifer Carla Boer, RMIT University, Australia; Wanli Xu, University of Connecticut, United States

                *Correspondence: Yan Xing, yxsxz@ 123456outlook.com

                These authors share first authorship

                This article was submitted to Infectious Agents and Disease, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.923273
                9279133
                35847070
                841a000b-d0e9-4c15-b453-9b032e897116
                Copyright © 2022 Jia, Yu, Chang, You, Chen, Wang, Liu, Chen, Ma, Xing and Tong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 April 2022
                : 30 May 2022
                Page count
                Figures: 7, Tables: 3, Equations: 0, References: 35, Pages: 14, Words: 7795
                Funding
                Funded by: Natural Science Foundation of Beijing Municipality, doi 10.13039/501100004826;
                Award ID: S160004
                Award ID: 7214270
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                gut microbiota,gestational age,klebsiella,enterococcus,bifidobacterium
                Microbiology & Virology
                gut microbiota, gestational age, klebsiella, enterococcus, bifidobacterium

                Comments

                Comment on this article