2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ice‐Templated, Sustainable Carbon Aerogels with Hierarchically Tailored Channels for Sodium‐ and Potassium‐Ion Batteries

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2(Anatase) Nanoparticles

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Raman spectroscopy as a versatile tool for studying the properties of graphene

            Raman spectroscopy is an integral part of graphene research. It is used to determine the number and orientation of layers, the quality and types of edge, and the effects of perturbations, such as electric and magnetic fields, strain, doping, disorder and functional groups. This, in turn, provides insight into all sp(2)-bonded carbon allotropes, because graphene is their fundamental building block. Here we review the state of the art, future directions and open questions in Raman spectroscopy of graphene. We describe essential physical processes whose importance has only recently been recognized, such as the various types of resonance at play, and the role of quantum interference. We update all basic concepts and notations, and propose a terminology that is able to describe any result in literature. We finally highlight the potential of Raman spectroscopy for layered materials other than graphene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carbon Electrodes for K-Ion Batteries.

              We for the first time report electrochemical potassium insertion in graphite in a nonaqueous electrolyte, which can exhibit a high reversible capacity of 273 mAh/g. Ex situ XRD studies confirm that KC36, KC24, and KC8 sequentially form upon potassiation, whereas depotassiation recovers graphite through phase transformations in an opposite sequence. Graphite shows moderate rate capability and relatively fast capacity fading. To improve the performance of carbon K-ion anodes, we synthesized a nongraphitic soft carbon that exhibits cyclability and rate capability much superior to that of graphite. This work may open up a new paradigm toward rechargeable K-ion batteries.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                January 05 2022
                : 2110862
                Affiliations
                [1 ]Bristol Composites Institute School of Civil Aerospace, and Mechanical Engineering University of Bristol University Walk Bristol BS8 1TR UK
                [2 ]Department of Chemical Engineering Imperial College London South Kensington Campus London SW7 2AZ UK
                [3 ]School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
                Article
                10.1002/adfm.202110862
                840e5f5d-d7e9-45c4-89e6-e8cea57835ec
                © 2022

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article