10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Alicyclobacillusspoilage and control - a review

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d3744100e65">In the last few decades Gram positive non pathogenic, rod shaped, thermo-acidophilic and acid-tolerant spore-forming bacteria such as Alicyclobacillus spp. have been identified as the causative agent in spoilage of commercially pasteurized fruit juice. In particular, A. acidoterrestris is considered a major producer of off-flavors. The spores of A. acidoterrestris possess the ability to survive commercial pasteurization processes, to germinate and grow in low pH environments and to produce volatile, unpleasant odorous compound (guaiacol) in fruit juices. The flat sour type of spoilage (without gas production or package swelling) is characterized as having a "medicinal," "smoky," and "antiseptic" off-flavor and makes the final juice product unacceptable. Spoilage by Alicyclobacillus is a major concern for producers since many of the new methods, which can destroy spores in the absence of chemical additives, may not destroy Alicyclobacillus. Although A. acidoterrestris is not pathogenic to humans, it can result in significant economic losses to juice processors because of its odor. The present review includes the taxonomy of Alicyclobacillus spp., their general characteristics, their resistance to heat and possible off-flavor production pathways. Particular emphasis is given to commonly used control measures, including physical, chemical and biological treatments currently available for removal of Alicyclobacillus spp. </p>

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          Essential oils: their antibacterial properties and potential applications in foods--a review.

          In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 microl ml(-1). Gram-negative organisms are slightly less susceptible than gram-positive bacteria. A number of EO components has been identified as effective antibacterials, e.g. carvacrol, thymol, eugenol, perillaldehyde, cinnamaldehyde and cinnamic acid, having minimum inhibitory concentrations (MICs) of 0.05-5 microl ml(-1) in vitro. A higher concentration is needed to achieve the same effect in foods. Studies with fresh meat, meat products, fish, milk, dairy products, vegetables, fruit and cooked rice have shown that the concentration needed to achieve a significant antibacterial effect is around 0.5-20 microl g(-1) in foods and about 0.1-10 microl ml(-1) in solutions for washing fruit and vegetables. EOs comprise a large number of components and it is likely that their mode of action involves several targets in the bacterial cell. The hydrophobicity of EOs enables them to partition in the lipids of the cell membrane and mitochondria, rendering them permeable and leading to leakage of cell contents. Physical conditions that improve the action of EOs are low pH, low temperature and low oxygen levels. Synergism has been observed between carvacrol and its precursor p-cymene and between cinnamaldehyde and eugenol. Synergy between EO components and mild preservation methods has also been observed. Some EO components are legally registered flavourings in the EU and the USA. Undesirable organoleptic effects can be limited by careful selection of EOs according to the type of food.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Biofilms: Microbial Life on Surfaces

            Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chitosan as antimicrobial agent: applications and mode of action.

              Chitosan, a hydrophilic biopolymer industrially obtained by N-deacetylation of chitin, can be applied as an antimicrobial agent. The current review of 129 references describes the biological activity of several chitosan derivatives and the modes of action that have been postulated in the literature. It highlights the applications of chitosan as an antimicrobial agent against fungi, bacteria, and viruses and as an elicitor of plant defense mechanisms.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Food Science and Nutrition
                Critical Reviews in Food Science and Nutrition
                Informa UK Limited
                1040-8398
                1549-7852
                January 02 2020
                February 07 2019
                January 02 2020
                : 60
                : 1
                : 108-122
                Affiliations
                [1 ]Faculty of Agro-Industry, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand
                Article
                10.1080/10408398.2018.1516190
                30729793
                840896d4-9a79-466d-a4b5-793987a700ab
                © 2020
                History

                Comments

                Comment on this article